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Warning

When I am sending this notes, they are very far to be finished or complete, there are an unbelievable
number of missprints or english mistakes, there are missing references, other which are not usefull here,
etc.... However, it can give a good indication of what will be the content of the mini-course, and also its
spirit.

I hope to send a more complete and clean version of my notes during the conference, or just after.

1 Robust tangency in a global view of C1-dynamical systems

1.1 Approaching the global dynamics by periodic orbits

During the last 2 decade, there has been a lot of works explorating the dynamics of the diffeomorphisms
or the vector-fields on compact manifolds, from the point of view of the C1-topology:

• lemmas of C1-perturbations of the orbits, as Pugh closing lemma and Hayashi connecting lemma,
allowed us to show that the dynamics of C1-generic diffeomorphisms (or flows) is very well ap-
proached by the periodic orbits:
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– the chain recurrent set is the closure of the set of periodic orbits ([BC]). More generally, every
chain transitive set1 is the Hausdorff limit of periodic orbits ([Cr]).

– the chain recurrence classes containing a periodic orbit is the homoclinic class of the periodic
orbit [BC];

– every ergodic measure is the Hausdorff and weak limit of periodic measure [Ma]

• lemma of C1-perturbation of the local dynamics in the neighborhood of periodic porbits, through
Franks lemma, related the lake of hyperbolicity and dominated splittings with the bifurcation
associated with periodic orbits.

1.2 Lack of hyperbolicity and periodic orbits

Consider dynamical systems far from hyperbolic dynamics: f ∈ Diff1(M) \ {AxiomA+ nocycle}. As,
C1-generically, the global dynamic is very well aproached by periodic orbits, this lack of hyperbolicity is
reflected by a lack of hyperbolicity on the periodic orbits (this are important ideas due to Mañé and Liao
in the 70-80ies).

Let me try a first conjecture (first formulated in dimension 2 in [ABCD]): the robust non hyperbolicty
is due to the robust non-hyperbolicity of a homoclinic class

Conjecture 1.1. There is a dense open subset in Diff1(M)\{Axiom A + no cycle} of diffeomorphisms
having a hyperbolic periodic point pf whose homoclinic class (or chain recurrence class) is robustly non
hyperbolic.

This conjecture remains open in any dimension ≥ 2. In dimension 2, after Moreira’s result, this conjec-
ture remains the main difficulty for proving Smale’s conjecture (the density of Axiom A diffeomorphisms
on surfaces).

Remark 1.2. If this conjecture is false, then there is an open set U of Diff1(M) such that for every
C1-generic diffeomorphism f ∈ U , one has:

• every homoclinic class is an hyperbolic basic set (in particular is isolated)

• there are infinitely many homoclinic classes, accumulating on aperiodic classes

1.3 Lack of hyperbolicity and bifurcations

The two way for loosing the uniform hyperbolicity on the set of periodic orbits are:

• either one looses the uniform exponential contraction/expansion at the period:

lim
n→∞

1
per(xn)

log
(
M
(
Dfper(xn)|Eu(xn)

)
−
∥∥∥Dfper(xn)|Es(xn)

∥∥∥) = 0

• or one looses the uniform domination of the stable/unstable splitting along the orbits: they are ar-
bitraliy large time intervals where the exapnsion in the unstable direction is not twice the expansion
in the stable direction.

These two phenomena leads to two different kind of bifurcations:

• in the first case, up to a small perturbation, one direction changes from contracting to expanding
or the contrary ([Ma1]): in other words, one may perform a saddle node or a flip bifurstion. If this
phenomena happens persistently in some open region of Diff(M) then one has the coexistence of
different indices, and one conjectures that this leads to hetero-dimensional cycle;

1An invariant compact set K is chain transitive if one can goe from any x ∈ K to any y ∈ K by pseudo orbits in K with
arbitrarily small jumps
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• in the second case, up to a small perturbation, the stable and unstable direction makes a very small
angle: this may lead to homoclinic tangency ([PS, W2, Go]).

This suggested the following conjecture, formulated by J Palis in any Cr-topology, but with many
progresses in the C1-topology:

Conjecture 1.3 (Palis density conjecture). There is a dense open subset O = O1 ∪ O2 of Diff1(M)
such that f ∈ O1 statisfies the Axiom A without cycle, and there is a dense subset D ⊂ O2 such that
f ∈ D admits a heterodimensional cycle or a homoclinic tangency.

For instance, the mini-course by Crovisier and Pujals will present their recent proof of the C1-density
conjecture for the attractors and repellers.

However, Kupka Smale theorem implies that for Cr generic diffeomorphisms the periodic orbits are
hyperbolic, the stable and unstable manifolds are all transverse, so that f has no heterodimensional cycles
nor homoclinic tangencies. So, Palis conjectures implies that perturbations can destroy the cycles or the
tangencies but new perturbation could rebuild the cycle or the tangency.

In my mind, this means that the heterodimensional cycles and the homoclinic tangencies are not
responsable of the robust non-hyperbolicity, at the contrary, there are consequences of the lack of hyper-
bolicity.

For caracterizing the non-hyperbolicity, one would like to found robust local phenomenon generating
homoclinic tangencies and/or heterodimensional cycles.

1.4 Robust cycle and tangencies

From Abraham-Smale examples, one knows the existence of C1-robust cycle relating hyperbolic basic
sets of different indices:

Definition 1.4. Let U be a C1-open set of diffeomorphisms f having hyperbolic basic sets Kfand Lf ,
varying continuously with f ∈ U , such that the indices (dimension of the stable bundle) are differents ,
and such that W s(Kf ) ∩Wu(Lf ) 6= ∅ and Wu(Kf ) ∩W s(Lf ) 6= ∅.

Then we say that f has a C1-robust cycle associated to Kf and Lf .

If f ∈ U has a robust cycle associated to Kf and Lf and if pf ∈ Kf and qf ∈ Lf are hyperbolic periodic
points (of different indices), then C∞-densely in U , f performs an heterodimensional cycle associated to
pf and qf . Assume for instance that dimEs(q) < dim(Es(p)) so that dim(Es(p) + dimEu(q) > dimM .
Then for an open and dense subset of U , W s(p) cuts transversally Wu(q) at some point. Now, small
pertubartion allows to get that Wu(p) will cross quase transversally every stable manifolds in W s(Lf )
and, densely, this stable manifold will be the one of qf .

On defines robust tangencies in the same way :

Definition 1.5. Let U be a C1-open set of diffeomorphisms f having hyperbolic basic sets Kf varying
continuously with f ∈ U , such that W s(Kf ) ∩Wu(Kf ) 6= ∅ contains a non-tranverse intersection point.
Then we say that f has a C1-robust tangency associated to Kf .

Once again, robust tangencies associated to a hyperbolic basic set Kf , f ∈ U , lead to a dense subset
of U with homoclinic tangency associated to pf , where pf is any periodic point in Kf .

1.5 Existence of robust cycles and robust tangencies

In 68, [AS] build the first example of a C1-open set of non-Axom A diffeomorphisms, on a 4-manifold.
Then in 72,[Si] built an example in dimension 3. These examples consisted in building a robust het-
erodimensional cycle. As recently pointed out by Asaoka [As], their construction leads also to a robust
tangency. I will explain the construction in the next chapter.

In 74 [N3] built a C2-open set of diffeomorphisms on surfaces having a C2-robust tangency associated
to a hyperbolic basic set Λ, assuming that Λ is big: his thickeness is larger than 1

2 . Furthermore, he
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proved that every homoclinic tangency associated to a periodic point p generates, by performing the
bifurcation, a thick hyperbolic set related to p and having a homoclinic tangency: so every tangency can
be turn robust (see [N3]) !

However, Newhouse result holds in dimension 2, and that just for Cr-topology, r > 1. There are
generalisation in special cases in higher dimension (see [PV]).

1.6 From cycle and homoclinic tangency to robust cycles or tangencies

Hence Palis conjecture would give an explanation of the non-hyperbolic dynamics if it was possible to
turn robust every heterodimensional cycle and homoclinic tangency.

Indeed it is almost done for heterodimensional cycles:

Theorem 1.1. [BD4] If f is a diffeomorphism admiting a heterodimensional cycle associated to periodic
points p,q wit ind(p)− ind(q) = 1 then there is g close to f having a robust cycle.

(in most of the cases, one may ensure that the robust cycle is associated to p and q but there is
precisely one configuration where we could build counterexample).

Is it possible to turn robust a homoclinic tangency? We will see that Moreira’s result answer negatively
to this question: in dimension 2 there are no C1-robust tangency.

Notice that robust (or persistent) tangencies associated to a periodic point p leads to accumulations
of periodic orbits of a different index in a neignborhood of the homoclinic class of p: every homoclinic
tangency associated to p generates perioodic orbits having a complex eigenvalues corresponding the the
weakest stable and unstable eigenvalues of p. Hence it is natural to espect that robust tangency leads to
heterodimensional cycles and to robust cycles.

Conjecture 1.6 (Bonatti). Let U being a C1-open set of diffeomorphisms f having a hyperbolic basic
set Kf varying continuousliy with f and presenting a robust tangency. Then there is a C1-dense open
subset U1 of U such that for f in U1 there is a hyperbolic basic set Lf of different index as Kf and such
that (K − f, Lf ) present a robust cycle.

In dimension 2, there are no robus cycles, so this conjecture means that there are no robust tangency,
which is the recent result by Moreira (see section 1.10). In higher dimension with Crovisier, Diaz and
Gourmelon, we have very partial results in this direction (see section 1.11).

This conjecture would be an important step in another conjecture, which generalizes Palis density
conjecture:

Conjecture 1.7 ([BD4]). The union of the disjoint C1-open sets of diffemorphisme H∪RC, where H is
the set of Axiom A + no cycle diffeomorphisms and RC is the set of diffeomorphism presenting a robust
cycle, is dense in Diff1(M).

Remark 1.8. • This conjecture provides a caracterization of the non hyperbolicity which would be
checkable by computers: being Axiom A + no-cycle is algoritmically checkable and having a robust
cycle is checkable too.

• This conjecture point out the heterodimensional cycles has the unique culprit of the robust non-
hyperbolicity. Does it mean that the robust tangency has no role in that theory? Next conjecture
point out the robust tangencies as necessary for the wild behaviors.

1.7 Tame and wild dynamics

1.7.1 Definitions

An argument of genericity (using Pugh closing lemma, the fact that periodic orbits can be turned hyper-
bolic, and Conley theory) shows [Ab, BC]:
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Theorem 1.2. There is a residual subset R of Diff1(M) such that for f ∈ R, every isolated chain
recurrence class is robustly isolated (an is a homoclinic class).

This leads to the natural notion:

Definition 1.9. A diffeomorphism f is tame if every chain recurrence class is robustly isolated.

One denotes by T (M) the set of tames diffeomorphism. It is a C1 open set containing Axiom A +
no cycle. A tame diffeomorphism has finitely many chainrecurrence classes, and this number is locally
constant.

A diffeomorphism is wild if it is far from tame diffeomorphisms. One denotes

W(M) = Diff1(M) \ T (M)

the set of wild diffeomorphism.
C1-generic wild diffeomorphisms have infinitely many chain recurrence classes and infinitely many

homoclinic classes.

1.7.2 Wild dynamics and wild homoclinic classes

My feeling is that wild dynamics are produced by a homoclinic class which generates new homoclinic
classes nearby by perturbations. That is, once again, the wild behavior is seen from the periodic orbits,
or better said, the wild behavior is generated by a robust local phenomenon related to periodic orbits. This
may be expressed by the following conjecture:

Conjecture 1.10. There is a dense open subset O of W(M) of diffeomorphism f having a hyperbolic
periodic point pf varying continuously with f , and such that for C1-generic f ∈ O the homoclinic class
H(pf , f) is not isolated.

This leads to the notion of wild homoclinic class: One says that the homoclinic class H(pf , f) is a
wild homoclinic class if for C1-generic g close to f the class H(pg, g) is not isolated.

Using the fact that, for C1-generic diffeomorphisms, isolated classes are robustly isolated and the fact
that the number of homoclinic classes is countable, one proves easily

Lemme 1.11. There is a residual subset R ⊂ Diff1(M) such that if f ∈ R then every homoclinic class
H(pf , f) which is not isolated is a wild homoclinic class.

So Conjecture 1.10 may be restated as

Conjecture 1.12. There is a residual subset R ⊂ Diff1(M) such that every f ∈ R∩W(M) has a wild
homoclinic class.

Remark 1.13. If this conjecture is wrong, then there is a non-empty open subset U ⊂ Diff1(M) such
that, for every C1-generic diffeomorphisms f ∈ U one has:

• every homoclinic class is robuslty isolated

• there are sequence of homoclinic classes accumulating on aperiodic classes.

1.7.3 wild homoclinic classes and robust tangencies

Here is the role of robust tangency:

Conjecture 1.14 (Bonatti). If U is an open set where pf is a periodic point varying continuously with
f ∈ U and H(pf , f) is a wild homoclinic class, then there is a dense open subset of U where H(pf , f)
contains a robust tangency.

The easier step for proving this conjecture is the next conjecture (first expressed at UMALCA Cancun
2004)

6



Conjecture 1.15 (Bonatti). 1. (weak version) There is a residual subset R fo Diff1(M) such that,
for every f ∈ R, every chain recurrence class admiting a partially hyperbolic splitting

Ess ⊕
<
Ec ⊕

<
Euu

, where dimEc = 1, is isolated.

2. (strong version) There is a residual subset R fo Diff1(M) such that, for every f ∈ R, every chain
recurrence class admiting a dominated splitting

Ess ⊕
<
Ec1 ⊕< · · · ⊕< Eck ⊕< Euu

, where dimEci = 1, is isolated.

This conjecture expresses that, if a dominated splitting forbids homoclinic tangencies, then the local
dynamic is tame.

However, Conjecture 1.14 is far to provide a caracterization of wild dynamics, as there are example
of tame dymanics which presents robus homoclinic tangencies.

1.8 Splitting Diff 1(M) in 8 open regions

We consider 3 criteria:

• beeing robustly aproximated by heterodimensional cycles , or being far from heterodimensional
cycles. This defines two disjoint open sets, whose union is dense.

• being robustly aproximated by homoclinic tangency, or being far from homoclinic tangency. This
defines two disjoint open sets, whose union is dense.

• being wild or tame.

These criteria define 8 disjoint open regions whose union is dense in Diff1(M).

1. Tame diffeomorphisms far from homoclinic tangency and heterodimensional cycle are Axiom A +
no cycle.

2.
{Tame diffeomorphisms with tangency but no cycle} = ∅

3. there are examples of tame diffeomorphisms far from tangency but with robust cycles.

4. there are example of tame diffeomorphisms with robust cycle and robust tangency

5. Palis density conjecture means that

{wild diffeomorphism far from tangency and cycle} = ∅.

6. Conjecture 1.7 is already known on tame diffeomorphisms. The open part of this conjecture means
that

{wild diffeomorphism far from cycle} = ∅.

7. Conjectures 1.10 and 1.14 mean that

{wild diffeomorphism far from tangency} = ∅.

8. there are example of wild diffeomorphisms, using wild homoclinc classes having robust cycles and
robust tangencies.
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1.9 abundance of robust tangencies

[BD4] shows that one can turn robust any homoclinic tangency which occurs on a period point of a robust
heterodimensional cycle. Let us state here some consequences:

Theorem 1.3. There is a residual subset R ⊂ Diff1(M) such that if f ∈ R and p is a periodic point of
f such that H(p) contains a periodic point of different index as p and the stable/unstable splitting over
the periodic point homoclinically related with p is not dominated, then p belongs to a hyperbolic basic set
having a robust tangency.

As always, such perturbation lemma has strongest consequences on tame diffeomorphisms:

Corollaire 1.16. Let T (M) be the C1 open set of tame diffeomorphisms. Then there is an open an
dense subset O ⊂ T (M) such that, for every f ∈ O and every chain recurrecne class C of f one has

• either there is a partially hyperbolic splitting on C

TM |C = Es ⊕
<
E1 ⊕< · · · ⊕< Ek ⊕< Eu

where Es is uniformly contracting, Eu is uniformly expanding and dim(Ei) = 1.

• or C contains a hyperbolic basic set having a robust tangency; furthermore C contains a robust
heterodimensional cycle.

1.10 No robust tangency in dimension 2

Theorem 1.4. Let S be a closed surface. There are no C1-robust tangencies for diffeomorphisms in
Diff1(S).

This is an important step in direction of Smale’s conjecture

Conjecture 1.17. The Axiom A + no cycle diffeomorphisms are dense in Diff1(S).

According to [ABCD] it remains 2 difficulties for proving Smale conjecture.

• one is give by Conjecture 1.1 stated above: diffeomorphisms having a C1-robustly non-hyperbolic
homoclinic classe are dense far from Axiom A + no cycle

• the second is that the non-hyperbolicity of a homoclinic class could not be seen, generically, on the
intersection of the invariant manifolds of a hyperbolic set contained in the homoclinic class:

Conjecture 1.18. For f C1-generic, if H(p) is a non-hyperbolic homoclinic class then it contains
a robust cycle or a robust tangency.

1.11 Homoclinic tangencies and heterodimensional cycles in higher dimen-
sion

The results in thsi section are a work in progress with S. Crovisier, L. Dı́az and N. Gourmelon.

Theorem 1.5. Given P a hyperbolic periodic saddle with index i ≥ 2. Assume that there is no nominated
splitting on H(P ) neither of index i − 1 nor of index i. Assume also that there is Q ∼ P such that
|λi(Q)λi+1(Q)| ≥ 1.

Then there are arbitrarily small perturbations of f creating heterodimensional cycle between Pg and a
point Rg of index i− 1.

The hypothesis of no dominated splitting of index i is equivalent to one can create a homoclinic
tangency associated to p, by small C1-perturbation according to [W2, Go].

Corollaire 1.19. Given P a hyperbolic periodic saddle with index 2 ≤ i ≤ dimM −2. Assume that there
is no nominated splitting on H(P ) neither of index i− 1 nor of index i nor of index i+ 1. .

Then there are arbitrarily small perturbations of f creating heterodimensional cycle between Pg and a
point Rg of index i− 1 or i+ 1.
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1.12 Generalizing Moreira’s result in higher dimension

Let me end this introduction by propose a problem to the reader. It consists to try to generalize Moreira’s
result in higher dimension.

Conjecture 1.20. Let K be an index dim(M)− 1 hyperbolic basic set of a diffeomorphism f : M →M .
Assume furthermore that K is totally dissipative: for every x ∈ K, and every 2-plane P ⊂ TxM the
determinant of the restriction of Dxf to P is less than 1:

|det(Dxf)|P | < 1.

Then there is no robust tangency associated to K.

We will see (see Theorem 2.2) that there are codimension 1 hyperbolic basic sets with robust tangecy.
That is, the hypothesis totally dissipative is essential is that conjecture.

It is easy to see that this conjecture is wrong if K is not a Cantor set. So I complete this conjecture
by:

Conjecture 1.21. Let K be a totally dissipative index dim(M)−1 hyperbolic basic set of a diffeomrophism
f : M →M . Then K is a Cantor set.

2 C1-robust tangencies in dimension larger than or equal to 3

2.1 C1-robust heteroclinic tangency

Robust-heteroclinic tangeny a known from the sixties: they are responsable of the terminology strong
transversality condition which is necessary for the structural stability. The idea is very simple:

Remark 2.1. Thom’s transversality theorem asserrts that, generically, two submanifolds are always
transversal. However, if you consider a foliation F and a submanifold N , one cannot apply Thom’s
theorem for putting N tranvesre to F . The easier reason is, if N has the dimension of the codimension
of F , then if N cuts the leaves of F in two point with the contrary orientation, then this property persists
by C1 perrturbation of N and F , and in some sense, by C0 perturbation of N and F : C0 perturbation
of N and F cannot put N transverse to F .

We will apply this simple remark to the intesrection of a unstable manifold of a saddle with the stable
foliation defined on the basin of an attractor. More precisely:

Consider a diffeomorphism f ∈ Diff1(M) having a non-trivial hyperbolic attractor A; that is, A
is a hyperbolic basic set, non reduced to a hyperbolic periodic sink, whose stable manifold contains a
neighborhood of A. The index of A is the dimension of the stable bundle of A, hence is the stable index
of the periodic saddle points contained in A.

Recall that W s(A) is foliated by the stable foliation Fs whose leaves are the stable manifolds of the
points in A. The leaves of F are as differentiable as f but the transverse structure is just C0. The stable
bundle varies C0 with f .

Let q be a saddle point of f having the same index as A, and assume that Wu(q) ∩W s(A) is non-
empty. Assume that there is an open subdisk D ⊂Wu(q) contained in W s(A) and such that, for a (local)
orientation of Fs defined in the neighborhood of D, there are two points of D where D cuts cF s with
opposite orientation.

Lemme 2.2. With he hypotheses above, Wu(q) has a robust tangency with the stable manifold of A.

2.2 Example of C1-robust tangencies

For building a robust tangency, one needs an hyperbolic set whose stable (or unstable) manifold has a
larger dimension than the stable manifolds of each of its point. An easy example is given by the (non-
trivial) hyperbolic attractors: the stable manifold of a nontrivial attractor is an open set, foliated by the
(lower dimensional) stable manifolds of its points.
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Consider a axiome A diffeomorphism ϕ of the 2 sphere S2 whose non-wandering set consists in exactly
a finite number of repelling fixed points αi and a hyperbolic Plykin attractor A. Removing a small disk
in the basin of the repeling point α0, one gets an attracting disk D2 for ϕ. Let λ be a upper bound of
the unstable derivative of ϕ on the attractor A and on the finitely many repelling points, that is

λ > sup{|Duϕ(z|, z ∈ A} ∪ {‖Df(αi‖}

One may assume that

• ϕ coincides with z 7→ z
2 on the neighborhood of ∂D2;

• ϕ is isotopic to the homothety z 7→ z
2 relatively to a neighborhood of ∂D2, meaning that the

diffeomorphism coincides with the homothety all along the isotopy ϕt, where ϕε = ϕ, ϕ1−ε : z 7→ z2
for every small ε.

• ϕt is a smooth isotopy: one assume that (x, t) 7→ (ϕt(x), t) is a diffeomorphisms.

Multiply this 2-disk with a transverse expansion: one get a diffeomorphism on D2 × R. One denotes
by Ψ: D2 × R→ D2 × R the diffeomorphism defined by (z, t) 7→ ϕinf{|t|,1}(z), λt).

Notice that

• Ψ coincides with the linear saddle map (x, y, t) 7→ (x2 ,
y
2 , λt) out of a compact set contained in

int(D2)× (−1, 1)

• the disk D2×{0} is an invariant normally hyperbolic disk. As a consequence it persist by C1-small
perturbation of ψ.

Consider a diffeomorphism f0 of R3, and assume that f0 has a saddle point p0 such that f0 coincides
with the linear map (x, y, t) 7→ (x2 ,

y
2 , λt) in small linearizing coordinates (x, y, t) around p0. One denotes

by fε the diffeomorphism which coincides with f0 out of {
√
x2 + y2 < ε, |t| < ε} and with (x, y, t) 7→

εΨ(xε ,
y
ε ,

t
ε ). We denote by Aε the hyperbolic basic set of fε corresponding to A.

Theorem 2.1. Assume now that p0 has a transverse homoclinic intersection. Let q be a periodic point
homoclinically related with p. Then there is ε0 > 0 such that for every ε ∈ (0, ε0) one has

• fε has a robust cycle relating the hyperbolic basic set Aε and the hyperbolic saddle q

• fε has a robust tangency associated to Aε.

This fact is the idea for Abraham Smale examples [AS], Simon examples [Si], and the argument is
more explicit in Asaoka recent work [As].

2.3 A local mecanisms for C1-robust tangencies

This chapter is dedicated to the results in [BD4]. One first define a special kind of hyperbolic basic set,
called blender horsehoe, and which will substitute the set Aε of the previous examples. As Aε, its a
hyperbolic basic set whose stable manifold has larger dimension than its index, that is the dimension of
the stable manifold of the hyperbolic set is larger than the stable manifold of each point in the basic set.

2.3.1 Blender horseshoes

A horseshoe of a diffeomorphism f is a hyperbolic basic set admiting a Markov partition consisting in
precisely 1 rectangle R, and such that the intersection f(R)∩R contains precisely 2 connected components.

A cu-blender horseshoe is a horseshoe with additional properties. More precisely, a hyperbolic basic
set Λ of a diffeomorphism f of a 3-manifold M is a blender horseshoe if

10



1. there is a cube C ' [−1, 1]3 embedded in M such that Λ is contained in the interior of C and is
the maximal invariant set in C.

2. Λ is hyperbolic, C is a Markov partition of Λ and C∩f−1(C) consists in two connected components
A and B, which are disjoint from ∂u(C) = [−1, 1] × ∂([−1, 1]2); furthermore, f(A) and f(B) are
disjoint from ∂s(C) = {−1, 1} × [−1, 1]2.

3. In particular, Λ contains exactly two fixed points p ∈ A and q ∈ B. One call local stable manifolds
and one denotes by W s

loc(p) and W s
loc(q) the connected component of W s(p) ∩ C and W s(q) ∩ C

containing p and c. The local stable manifolds of p and q are segments joining the two faces of the
stable boundary of the cube C, that is, joining {−1}times[−1, 1]2 to {1}times[−1, 1]2.

4. there is a splitting Es ⊕ Ec ⊕ Eu defined on C, with the following properties:

(a) dimEs = dimEc = dimEu = 1

(b) the splitting is Df invariant (that is, for x ∈ A∪B the splliting at f(x) is the image by Df−x)
of the splitting at x.

(c) Df contracts uniformly the vectors in Es, expands uniformly the vectors in Ec ⊕ Eu and
expands uniformly stronger the vectors in Eu than in Ec.

5. there is α > 0 such that the cone-field Cuα(x) = {(v1, v2, v3) ∈ TxM,
√

(v1)2 + (v2)2 ≤ α|v3|} is
strictly invariant by Df(x), x ∈ A ∪B, that is Df(Cuα(x) ⊂ Cuα′(f(x)) with α′ < α.

6. for every vector v ∈ Cuα the plane generated by v and ∂
∂v2

is transverse to Es.

7. A vertical segment σ is a segment tangent to Cuα and joining [−1, 1]2 × {−1} to [−1, 1]2 × {−1}.
By the item above, the plane obtained from σ by considering the union of translated segments
σ + (0, t, 0), t ∈ R, cuts the local stable manifolds W s

loc(p) and W s
loc(q) each in exatly 1 point.

Hence, a segment disjoint from W s
loc(p) is at the right or at the left of W s

loc(p) : σ is at the left of
W s
loc(p) is that is t > 0 with σ + (0, t, 0) ∩W s

loc(p) 6= ∅.
One assume that

(a) any vertical segment σ intersecting W s
loc(p)∪W s

loc(q) is dijoint from the left and right faces of
C that is ∂left(C) = [−1, 1]× {−1} × [−1, 1] and from ∂right(C) = [−1, 1]× {1} × [−1, 1].

(b) any vertical segment meeting W s
loc(p) is disjoint and at the left from W s

loc(q).

8. According to the previous item, a vertical segment σ has 5 possible positions:

• at the left of W s
loc(p) (hence also at the left of W s

loc(q)); for being short, we say that σ is at
the left;

• intersecting W s
loc(p) (hence at the left of W s

loc(q))

• at the right of W s
loc(p) and at the lef of W s

loc(q); in that case we will say that σ is inbetween
(W s

loc(p) and W s
loc(q));

• intersecting W s
loc(q) (hence at the right of W s

loc(p))

• at the right of W s
loc(q) (hence also at the right of W s

loc(p); one says that σ is at the right.

One assume that

(a) if σ is at the right (resp. left) of W s(p) and if fA(σ) is a vertical segment, then fA(σ) is at
the right (resp. left) of W s

loc(p);

(b) if σ is at the right (resp. left) of W s(q) and if fB(σ) is a vertical segment, then fB(σ) is at
the right (resp. left) of W s

loc(q);

(c) for every vertical segment σ inbetween, fA(σ) or fB(σ) is a vertical segment inbetween.
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(d) for every vertical segment σ through W s
loc(p) , fB(σ) is not a vertical segment inbetween.

Remark 2.3. Having a Horseshoe blender is a C1-open property: if C is the cube defining a horseshoe
blender for f then there is a C1 neighborhood U of f for which C defines a horseshoe blender for every
g ∈ U .

2.3.2 example of blender horseshoe

Consider a diffeomorphism ϕ of R2 having a usual horseshoe in a rectangle R. Let a and b be the
connected components of R∩ϕ−1(R). One assume that the unstable derivative of f is uniformely larger
than 2 on R

Let fλ,s : R3 → R3 be the diffeomorphism such that

• fλ,s(x1, x2, x3) is on the form (ϕ(x1, x2), ψx1,x2(x3)),

• fλ,s(x1, x2, x3) = (ϕ(x1, x2), λx3 if (x1, x2) ∈ a

• fλ,s(x1, x2, x3) = (ϕ(x1, x2), λx3 + s if (x1, x2) ∈ b

Then for every λ ∈ (1, 2) and every t 6= 0, fλ,s has a horseshoe blender in the cube R× [−2s
λ−1 ,

2s
λ−1 ].

2.4 Blender horseshoe and robust tangencies

Let C be the cube of a blender horseshoe. A fold is a square S : [0, 1]2 →M where:

• S =
⋃1

0 σt where σt : [0, 1]→M, r 7→ S(t, r) is a continuous family of vertical segments

• σ0 and σ1 cut W s
loc(p)

• for every t ∈ (0, 1), σt is inbetween.

Remark 2.4. If θ : N →M is an immersed surface transverse to each sides of ∂C, tranverse to the local
stable manifolds W s

loc(p) and W s
loc(q) containing a fold S =

⋃1
0 σt with σt tangent to the smaller cone

Cuα
2

, then there is a C1 neighborhood UN of (θ,N) and a C1-neighborhood Uf of f such that, for every
N ′ ∈ UN and every g ∈ Uf , the surface N ′ contains a fold for the blender horseshoe of g.

Theorem 2.2. If C is the cube defining a blender horseshoe Λ of f and S =
⋃1

0 σt ⊂ C is a fold, then
there is a point x ∈ Λ such that W s(x) is tangent to S at some point y ∈W s(x) ∩ S.

The main step for provig the theorem is

Lemme 2.5. f(S) ∩ C contains a fold S1.

proof of the Theorem assuming the Lemma : : The lemma allows us to define by induction a
sequence Si of folds with Si+1 ⊂ f(Si) ⊂ f i(S). Consider the decreasing sequence Σi = f−i(Si). Then
Σ =

⋂
i Σi is a non-empty compact set. Every point in Σ has all its positive iterates in C hence belongs

to the stable manifold of Λ. Furthermore, every fold Si contains a point xi tangent to the vectorfield
∂
∂x1

which is contained in the stable cone Csα which is invariant by negative iterates. Every accumulation
point of the sequence of negative iterates f−i(xi) ∈ Σ ⊂ S is a tangency point of S with W s(Λ). 2

It remains to prove the lemma.
Proof : First assume that none of the fB(σt) is a vertical segment inbetween. Then, by assumptuion, for
every t ∈ (0, 1) fA(σt) is a segment between. Then fA(σi, i = 0, 1 is a vertical segment through W s

loc(p).
So fA(S) is a fold.

Now assume that there is t1 such that fB(σt1) is inbetween. Let 0 ≤ t0 < t1 < t2 ≤ 1 such that
fB(σt) is inbetween for every t ∈ (t0, t1) and such that (t0, t1) is the largest interval with this property.
Then σt0 and σt2 are through W s

loc(p). Hence S1 =
⋃t2
t0
fB(σt) is a fold, ending the proof. 2
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2.5 abundance of C1-robust tangencies

If p is a saddle-node point and if the strong stable and strong unstable manifolds of p have a homoclinic
intersection, then a small perturbation of f build a blender horseshoe for some iterate of f , containing
the point p.

If p and q are hyperbolic periodic saddle points such that index(p) + 1 = index(q) and if there is a
heterodimensional cycle associated ot p and q, then a small perturbation of f creates a saddle node point
r such that Wu(p) ∩W s(r) 6= ∅ 6= W s(q) ∩Wu(r). Hence, if p and q belong robustly to the same chain
recurrence class, one gets a blender horseshoe (Λ, C) (of the same index as p in the chain recurrence class
of p; this blender horseshoe and p are contained in a larger basic set Kf .

Recall that, according to [Ab, BC], for generic diffeomorphisms, if two periodic points belongs to the
came chain recurrence class, they belong robustly to the same chain recurrence class.

Now, if the stable unstable splitting is not dominated along the periodic orbits homoclinically related
with p, then [Go] allows to create a homoclinic tangency associated to p. Iterating a small rectangle
of Wu(p) around the tangency point, and performing a small perturbation, one build a (robust) fold
contained in Wu(p) ∩ C. Hence one gets that Kf has a robust tangency.

A standard argument of generricity allow nos to prove Theorem 1.3 and Corollary 1.16.

3 C2-robust tangencies in dimension 2

3.1 Homoclinic tangency and intersection of Cantor sets

In this section, I will just explain the rough idea that many people knows, just for justifying the fact that
the heart of the study consists in analysing dynamical Cantor sets in dimension 1.

Let f be a diffeomorphisms of a compact surface, having a hyperbolic basic set K of saddle type.
Then K admits a generating Markov partition by disjoint rectangles.

The local stable manifold of K (i.e. the set of point whose positive iterates remain in the rectangles
of the Markov partition = the intersection of the negative iterates of the union of the rectangle of the
Markov partition) is homeomorphic to the product of a Cantor set by a segment; the leaves form a
continuous family of segments which are as smooth as f ; furthermore, if f is of class C2, this local stable
manifold W s

0 (K) may be embedded in a C1-foliation Fs.
In the same way, local unstable manifold Wu

0 K is homeomorphic to the product of a Cantor set by
a segment as smooth as f ; if f is of class C2, this local stable manifold W s

0 (K) may be embedded in a
C1-foliation Fu.

Let us denote Wu
n (K) = fn(Wu

0 (K); it is a larger local stable manifold of K. In the same way one
defines W s

n(K) = f−n(W s
0 (K)).

Assume now that, at some place, a leaf of the unstable foliation Fu makes a quadratic tangency with
a leaf of Fs at a point x. Then, as the leaves are C2 and depends C2-continuously on the point, there is
a neighborhood Ux of x where the tangency point between Fs and Fu form a C0 curve γ topologically
transverse to both foliations.

Now, γ is a segment and γ ∩W s
n(K) is a Cantor set Ks and γ ∩Wu

n (K) is a Cantor set Ku.
There is a homoclinic tangency associated to K for the local stable manifolds if Ks ∩Ku 6= ∅.

3.2 The geometric part of Newhouse argument

3.2.1 Thickness of a Cantor set

Given a Cantor set K ⊂ R a gap of K is a connected component of R \K.

Definition 3.1. • Given a gap I let t(I) denote inf `(U)
`(I) where U is the smallest interval joining I

to a gap larger or equal to I.

• U will be called an interval which is adjacent to the gap I: each gap has two adjacent intervals.
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• One denote
t(K) = inf

I gap of K
t(I) ∈ [0,+∞),

the thickness of K.

Remark 3.2. Given a gap I, the gaps contained in its adjacent intervals are strctly smaller, by definition
of adjacent intervals.

3.2.2 Thickness and intersection of Cantor sets

Theorem 3.1. If K and L are Cantor sets such that t(K)t(L) > 1 then either K is contained in a gap
of L or conversely L is contained in a gap of K or else K ∩ L 6= ∅.

We will argue by contradiction, assuming that K and L are disjoint, but there is a, b ∈ K and c, d ∈ L
such that a < c < b < d or c < a < d < b; one says thatthe intervals [a, b] and [c, d] are linked.

As K and L are disjoint compact set, one easily proves:

Lemme 3.3. The set of (a, c, b, d) ∈ K2×L2 such that [a, b] and [c, d] are linked is a compact open subset
of K2 × L2 (disjoint from the diagonals)

Assume that I (with extremities in K) and J (with extremities in L) are linked. Then I has exactly
one extremity in J . This extremity belongs to a gap J0 of L in J (because K and L are disjoint). Now
J0 has its extremities in L and I and J0 are linked because I has exactly one extremity in J0; hence one
may repeat the argument: one extremity of J0 belongs to a gap I0 of K contained in J . We just proved :

Lemme 3.4. Assume that I (with extremities in K) and J (with extremities in L) are linked. Then
there is a gap I0 ⊂ I of K and a gap J0 ⊂ J of L such that I0 and J0 are linked.

Given a pair of linked interval I, J one associates the pair L(I, J) = (inf{`(I), `(J)}, sup{`(I), `(J)}) ∈
R2. We denote by <lex the lexicographic order on R2. Putting together the two lemma, one easily gets:

Corollaire 3.5. There is a gap I of K and a gap J of L such that the pair L(I, J) realise the infimum
for <lex of the L(I ′, J ′) for every linked pair.

We will conclude the proof of Theorem 3.1 by proving:

Lemme 3.6. For every linked pair I, J such that I is a gap of K and J is a gap of L, there is a linked
pair I0, J0 with L(I0, J0) <lex L(I, J).

Proof : I has an extremity in J . Let U be the adjacent interval (for K) of I starting at this extremity.
In particular one extremity of U in contained in the interior of J . If `(U) ≥ `(J) then J has an extremity
in U , hence in a gap I0 of K in U . Recall that the gap of K conatined in U are strictly smaller that I:
that is `(I0) < `(I) and the pair (I0, J) is linked. So (I0, J) is the announced pair.

In the same way, let V be the adjacent interval (for L) of J starting at the extremity of J in the
interior of I. If `(V ) ≥ `(I) then I has an extremity in V , hence in a gap J0 of L in V , `(I0) < `(I) and
the pair (I0, J) is linked. So (I0, J) is the announced pair.

It remains the case `(U) < `(J) and `(V ) < `(I). That is `(U)
`(J) < 1 and `(V )

`(I) < 1. As a consequence

t(K)t(L) ≤
(
`(U)
`(I)

)(
`(V )
`(J)

)
=
(
`(V )
`(I)

)(
`(U)
`(J)

)
< 1.

This contradics the hypothesis t(K)t(L) > 1.
2
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3.3 Dynamical cantor sets in R
The thickness provides a geometric criterium implying that two Cantor sets allways meet. How can we
ensure that the Cantor set we are considerin are thick enough? This geometric properties comes from
how the Cantor sets are generated. They are not any Cantor set, they are dynamical Cantor sets.

3.3.1 Definition: expanding map, filtrating set

We consider C1-maps ψ defined on a compact set U ⊂ which is a finite union of compact segments
U1, . . . Ur. One says that ψ is an expanding map if the derivative is larger than 1 in modulus:

∀x ∈ U, |ψ′(x)| > 1.

In particular the expanding map ψ is a diffeomorphism in restriction to every connected component
of U .

One says that U is a filtrating set for the expanding map ψ if for every i, j ∈ {1, . . . , r} one has

Ui ∩ f(Uj) 6= ∅ =⇒ Ui ⊂ Int(f(Uj))

We denote by Λ(ψ,U) the maximal invariant set of ψ in U :

Λ(ψ,U) =
⋃
n∈N

ψ−n(U).

In other words, Λ(ψ,U) is the set of points whose positive orbits by ψ is allways defined, because it
remains in the domain U of ψ.

Notice that, by construction, Λ(ψ,U) is a hyperbolic set of ψ, and the classical hyperbolic theory
implies:

Theorem 3.2. The restriction of ψ to Λ(ψ,U) is conjugated to the one sided finite type subshift associated
to the incidence matrix associated to ψ and to the connected components of U

Proof : Just consider the itineraries in the connecting components of U . 2

Proposition 3.7. The set Λ(ψ,U) admits a basis of filtrating neighborhoods.

Proof : Just consider the connecting components of the finite intersections
⋂m
n=0 ψ

−n(U). 2

Proposition 3.8. The set Λ(ψ,U) has empty interior.

Proof : The length of the positive iterates ψn(C) of a connected component C of Λ(ψ,U) is increasing
exponentiall with n > 0 but remains bounded, hence is 0. 2

One says that two pairs (ψ,U) and (ϕ, V ) of expanding maps defined on a filtrating set defines the
same dynamical set K if:

• K = Λ(ψ,U) = Λ(ϕ, V )

• K admits a (filtrating) neighborhood W such that the restriction of ψ and ϕ to W coincide.

Hence, a dynamical set K is a germ of an expanding map ψ at the neighborhood of the maximal
invariant set Λ(ψ,U) in a filtrating neighborhood U .
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3.3.2 The Cr-topology on the dynamical sets

Consider a dynamical set (K, [ψ]), where [ψ] is a germ at K of a Cr-expanding map. A Cr-neighborhood
of (K,ψ) is given by:

• a realization ψ of the germ [ψ]

• a fitrating neighborhood U of K for ψ

• a Cr neighborhood U of the restriction of ψ to U , small enough so that U is a filtrating st for every
ϕ ∈ U .

3.3.3 Thickness of C2-dynamical Cantor set

Theorem 3.3. The thickness t(K) depends continuously on K in the C2 topology. Furthermore, for any
C2-dynamical Cantor set K, the thickness t(K) does not vanish.

This comes from a (now classical) distorsion lemma:

Lemme 3.9. Let (K,ψ,U) be a C2 dynamical Cantor set. Then there is a constant C > 0 such that, for
every n ∈ N and every interval I ⊂ U) on which ψ is defined, for every x, y ∈ I one has

| logDψn(x)− logDψn(y)| < C.

Proof : As ψ is uniformly expanding, one gets that
∑n

0 d(ψi(x), ψi(y) is uniformly bounded, indepen-
dently to n, I and x, y ∈ I. Now using the fact that logDψ is a C1-map (hence is Lipschitz) one gets
that

∑n−1
0 | logDψ(ψi(x)) − logDψ(ψi(y))| is uniformly bounded, and one concludes by noticing that

| logDψn(x)− logDψn(y)| = |
∑n−1

0 logDψ(ψi(x))− logDψ(ψi(y))| 2

so one gets:

Theorem 3.4. Let K0,L0 be two C2-dynamical Cantor sets such that t(K0)t(L0) > 1, and such that
they admits a pair of linked inttervals. Then, there are C2-neighborhoods U ,V of K0 and L0 such that for
every K ∈ U and L ∈ V one has

K ∩ L 6= ∅

4 No C1-robust tangency in dimension 2

As we have seen, Newhouse argument uses the thickness which is a global geometrical invariant. This
geometric invariant has many very bad properties: the thickness of a subset L ⊂ K may be larger than
the thickness of K. Worst: the thickness of the union K = K1 ∪K2 of two Cantor sets K1 and K2 may
be arbitrarily small, independently on t(K1) and t(K2).

Looking now to C1-perturbation of dynamical Cantor set, the first natural question was to understand
if Newhouse argument holds in that topology. This as been solved by Raul Ures in his thesis, published
in [U].

4.1 Ures and Moreira’s result

4.1.1 Ures result: genericity of 0 thickness

Theorem 4.1. Given any C1-dynamical Cantor set K and given any ε > 0 there is are dynamical Cantor
sets K ′ arbitrarily C1-close to K, such that t(K ′) < ε.

As t(K) varies upper-semi continuously with K (because t() is an infimum of continuous fonctions)
one gets:

Corollaire 4.1. There is a C1-residual subset R of the set of C1-dynamical Cantor sets such that any
K ∈ R as thickness equal to 0.
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4.1.2 Separating two dynamical Cantor sets: the result of Carlos Gustavo Moreira

Theorem 4.2. Let (K, [ψ]) and (L, [ϕ]) be two dynamical sets. Then, every C1-neighborhoods VK and
VL of (K, [ψ]) and (L, [ϕ]) contain a pair ((K ′, [ψ′]), (L′, [ϕ′])) such that K ′ ∩ L′ = ∅.

Firts remark that K and L either are countable or contain a Cantor set K∞ and L∞. It contains a
Cantor set if and only if the incidence matrix have a eigenvalue of modulus larger than 1.

Recal that an incidence matrix A is called mixing or indecomponible if there is a power Ak such that
all the entries are strictly positive. In that case, one says that the corresponding dynamical Cantor set
is a mixing dynamical Cantor set.

The theorem is a consequence of the same statement for mixing dynamical Cantor sets.

Theorem 4.3. Let (K, [ψ]) and (L, [ϕ]) be two mixing dynamical Cantor sets. Then, every C1-neighborhoods
VK and VL of (K, [ψ]) and (L, [ϕ]) contain a pair ((K ′, [ψ′]), (L′, [ϕ′])) such that K ′ ∩ L′ = ∅.

4.2 Dynamical cantor sets in R
4.2.1 Markov partitions

A Cantor set K ⊂ R is called a Cr-dynamical Cantor set if

• There are disjoint compact segments I1, . . . , Ir ⊂ R, r ∈ N, ordered in an increasing way in R such
that

– K ⊂
⋃r
j=1 Ij ;

– for every j ∈ {1, . . . , r} the boundary of Ij is contained in K:

∂Ij ⊂ K

• there is a compact neighborhood U of
⋃r
j=1 Ij and a C1-map ψ : U → R with the following properties

– ψ(U) contains U in its interior.

– ψ is uniform dilatation: ψ′(x) > 1 for all x ∈ U . In particular, the restriction of ψ to each
connected component of U is a C1-diffeomorphism.

– for every i ∈ {1, . . . , r} there is a j ≤ k ∈ {1, . . . , r} such that ψ(Ii) is the convex hull of
Ij ∪ Ik (as the Ij are indexed in an increasing way, this convex hull contains I` if and only if
j ≤ ` ≤ k). In other words, the segments Ii form a Markov partition.

– K is the maximal invariant set in U :

K =
⋂
n∈N

ψ−n(U)

– The markov partition is mixing: for every j ∈ {1, . . . , r} there is n such that ψn(Ij) contains
all the Ik. In other words,

ψn(Ij ∩K) = K.

This is equivalent to the fact tha tthe incidence patrix of the Markov partition has a power
whose entries are all > 0.

We say that {I1, I2, . . . , Ir} is a Markov partition for K, and that K is defined by ψ, and U is an
isolating neighborhood of K. We say that K is a Cr-dynamical Cantor set if it is defined by a Cr-
expanding map ψ.
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4.2.2 Cr-Perturbations of a dynamical Cantor set

Remark 4.2. Let (K,ψ, {Ii}, U) be a dynamical Cantor set endowed with a Markov partition, a defining
expanding map and an isolating neighborhood.

Then every maps ψ′ : Cr-close to ψ defines a new dynamical cantor set (K ′, ψ′, {I ′i}, U) endowed with
a markov partition I ′i whose end points vary continuously and whose incidence matrix is equal to the one
of K. One says that (K ′, ψ′, {I ′i}, U) is Cr-close to (K,ψ, {Ii}, U)

This topology on the set of triple (K, {Ii}, ψ) does not depend on the choice of the isolating neigh-
borhood U . But the Cr-distance defining this topology depends on U .

We denote by λ((K, {Ii}, ψ), or shortly λ(K) the bound of the derivative of ψ on the Markov partition:

λ(K) = max

|ψ′(x)|, x ∈
r⋃
j=1

Ij

 .

Notice that, once fixed the Markov partition {Ij}, the bound λ(K) varies continuously with K for
the C1-topology.

4.2.3 Affine dynamical Cantor set

A dynamical Cantor set (K,ψ,U) is locally affine if there is a neighborhood U ′ of K such that the
restriction of ψ to every connecting component of U ′ is affine.

Lemme 4.3. The set of locally affine dynamical Cantor sets is C1-dense in the set of dynamical Cantor
sets.

Every locally affine Cantor set (K,ψ,U) admits a Markov partition {Ii} such that ψ is affine in a
neighborhood of every Ii. One says that the dynamical Cantor set (K, {Ii}, ψ, U) is affine.

4.3 Enlarging gaps: a C1-perturbation lemma

4.3.1 Intervals and gaps

Let (K,U, ψ, {Ii}i∈{1,...,r} be a dynamical Cantor set endowedd with a Markov partition.
An interval of the construction is a connecting component of ψ−n(Ii), n ∈ N and i ∈ {1, . . . , r}.

The interval of the construction are compact intervals but they intersect K along open and close subset
(clopen subsets). For every n ∈ N, an interval of generation n is a connecting component of ψ−n(Ii),
i ∈ {1, . . . , r}. Notice that a same interval I of the construction may be of different generations.

We denote by I the set of intervals of the construction. We denote by In the set of intervals of
generation n.

A gap is a connected component of R \K. We stratify the set of gaps in generation:

• a generation 0 gap is a connected component of R \ I where I =
⋃r

1 Ii.

• a generation 1 gap is a connected component of I \ ψ−1(I)

• A gap u of generation n is a connected component u of ψn−1(I) \ ψ−(n)(I). A generation n gap
is contained in a generation n − 1 I interval of the construction: u is an open interval contains
in I so that ψn−1(u) is well defined but ψn(u) is an open interval disjoint from the Ij and whose
extremities are endpoints of the Ij .

Remark 4.4. 1. If I is an interval of generation n, then ψn+1 is defined and expanding on I.

2. two different intervals of the construction are either disjoint or one contains the other.

3. An interval of generation n may not have any gaps of generation n+ 1.

4. two different gaps are always disjoint.
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4.3.2 Ratios gaps/intervals

Every interval of the contruction I of generation n shares its extremities with two gaps u−I and u+
I , whose

generation is at most n.
we denote A(I) = inf{ `(u

−
I )

`(I) ,
`(u+

I )

`(I) } ∈ (0,+∞), and A(K) = infI∈I A(I)}.

Remark 4.5. If (K,ψ, I) is a affine dynamical Cantor set, then

A(K) = inf
{I∈I}

(A(I)) > 0.

.
A classical argument using the control of distorsion shows

Lemme 4.6. If K is a C2-dynamical Cantor set, then A(K) > 0.

To every interval I of the construction, we will assign a specific gap uI ⊂ I, as follows. We consider
the time n such that ψn(I) is defined and equal to some of the 0-generation intervals Ik but ψn+1(I)
contains the convex hull of exactly Ii, Ii+1, . . . , Ij for i < j ∈ {1, . . . r}. In other words, n is the largest n
for which I is a n-generation interval. Then

uI = ψ−(n+1)(] sup Ii, inf Ii+1[).

In other words, uI is a gap of the smallest generation n contained in I. The gaps of these generations
are disjoint, hence naturally ordered. Then ui is the first or the last of these intervals, according to the
sign (> 0 or < 0) of the derivative ψn+1 on I.

Nex remark will allow us to perform perturbations, keeping the control of the gaps and intervals:

Remark 4.7. If I is an interval of largest generation n, and J is an interval of generation larger than
n + 1. Then the positive orbit of uI , u+

I and u−I are disjoint from the interior of J : in particular, any
perturbation of ψ supported in J does not change I, uI , u+

I and u−I .

For every interval of the construction I one defines a(I) = |uI |
|I| and we define

a(K, {Ii}i∈{1,...,r}) = inf {a(I), I interval of the construction} .

Remark 4.8. 1. If K is an affine Cantor set, then a(K) is given by the 0-generation intervals; in
particular a(K) > 0. If K is locally affine, then it is affine on the n-generation intervals for some
n > 0; as a consequence a(K) > 0

2. there are C1-dynamical Cantor sets with a(K) = 0. That is the case for the dynamical Cantor sets
with positive measure built by Mañé.

3. the fact that a(K) > 0 or a(K) = 0 does not depends on the choice of the Markov partition, but
just on (K,ψ|K).

Lemme 4.9. Il K is a Cr-dynamical Cantor set with r > 1, then a(K) > 0. Furthermore, a(K) depends
continously on K in the Cr-topology

Proof : That is a typical argument of control of the distorsion for expanding maps: there is C such that,
for every interval ψ of generation n,

max{ (ψn)′(x)
(ψn)′(y)

, x, y ∈ I < C.

The conclusion follows easily. 2
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Lemme 4.10. Let (K,ψ, I) be a dynamical Cantor set endowed with a Markov partition I. Let In
denote the set of n-generation intervals, for n ∈ N. Let (K ′, ψ′, I) be a dynamical Cantor set such that
the image by ψ′ of any interval J ∈ In is precisely ψ(J) and ψ′ : J → ψ(J) is the unique affine map such
that ψ−1ψ′ : J → J is increasing.

Then

• a(K ′) ≥ a(K) and A(K ′) ≥ A(K);

• for large n, K ′ maybe chosen arbitrarily C1 close to K.

Proof : The unique difficult point is the control of a(K ′) and A(K ′). Let us explain it.
Let Bk denote the boundary of the union of all n-generation interval. Notice that Bk ⊂ Bk+1. The

hypothesis implies that ψ = ψ′ on Bn. Notice that ψ(Bn) = Bn−1.
As ψ′ is affine on In a(K ′) is determined by the ratios a(I) for I intervals whose largest generation

number is less or equal to n − 1 (because, if I is a m-generation interval for mgeqn then a(I, ψ′) =
a(ψ′(I), ψ′).

Then it remains to remark that if the largest generation number of I is smaller than n − 1 then the
boundary of uI,ψ belongs to Bn. So the positive orbit for ψ and ψ′ of the extremities of UI,ψ coincide.
This implies

uI,ψ = uI,ψ′

thus a(I, ψ) = a(I, ψ′).
For A(K ′) just notice that

• One did not change A(I) for the generation ≤ n intervals.

• For the higher generation interval, one has A(I) ≥ A(ψ(I)), concluding.

2

4.3.3 Proof of Ures’s theorem: opening a large gap in one interval of the construction

Let K,U,Ψ be a dynamical Cantor set. Fix some η > 0. We want to perform η C1-small perturbation
in order that t(K ′) < ε. As the locally affine Cantor sets are dense, we may assume that K is affine, and
we fix a Markov partition I on which Ψ is affine.

We will now perform a perturbation whch will enlarge a gap, producing a very small thickness. As
we want to make an arbitrarilly small perturbation, we will spread this pertubation along the time, that
is we will perfor the perturbation along the iterates of an interval. For avoiding interactions between the
perturbations on different iterates of the interval, we need that the intervall remain disjoint from itself
during an arbitrarily large time

Lemme 4.11. For any n > 0 there is k > n and a component I of ψ−k(I) such that I, ψ(I), . . . , ψn(I)
are pairwize dijoint.

Fix δ ∈ (0, 1) such that any map ψ′ such that Dψ′

Dψ ∈ [1 − δ, 1
1−δ ] is an η-C1 small perturbation of ψ

(It is enough to chose δ such that δ
1−δλ < η (where λ is a bound of Dψ).

An easy calculation allows to verify:

Lemme 4.12. For every ε > 0 there is n(ε) with the following property Let x < y ∈ (0, 1) be such that
y − x ≥ a(K). There is a sequence of diffeomorphisms θ1, . . . , θn of [0, 1] with the following properties:

• Dθ ∈ [1− δ, 1
1−δ ]

• let xi, yi defined by induction as xn, yn = x, y and θi(xi−1) = xi and thetai(yi−1) = yi, then θi is
affine on [0, xi−1] and on [yi−1, 1]
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•
y0 − x0 > 1− ε

max{1, A(K)}

Proof : I did not make the calculation but Gugu wrote that n(ε) is more or less − log ε
a(K)ε . In fact it is

enough to get the existence of n(ε), which is easy. 2

Let ξ : I → [0, 1] be the unique increasing affine map. It send the prescribe gap uI on an interval
[x, y] ⊂ (0, 1) with y − x ≥ a(K). We apply the lemma to this value of x, and y.

We consider the perturbation L, φ of K,ψ defined as follows:

• φ = ψ out of (an arbitrarily small neighborhood of)
⋃n

0 ψ
i(I)

• The restriction φ : ψi−1(I)→ ψi(I) is ψiξ−1θiξψ
1−i

• (we have just to define φ on the adjacent gap to ψi(I): it consists in smoothing φ with ψ.

Then L is a η perturbation of K.
Furthermore, the gap uψn(I) remained unchanged by this perturbation (see remark 4.7). Now the

prescribe gap ũI is the preimage by φn of the gap uψn(I). One deduces that the new gap satisfies

`(ũI)
`(I)

≥ 1− εmin{1, A(K)}

The perturbation did’nt change the adjacent gaps. Now one of the component J of I \ ũI as a length
bounded by 1

2ε`(I) min{1, A(K)} and is bounded by a gap of size larger than A(K)`(I) and by ũI . Then
(for ε < 1

2 ) one gets that t(L) < ε, ending the proof of Ures theorem.

4.3.4 A C1-perturbation lemma: opening many large gaps

This section explains the well known idea, already used by Ures in [U], that small C1-perturbation allow
to enlarge a given gap. However one would like to open many gaps. The problem is that enlarging some
gaps can shrink the nearby gaps. Hence it is natural to get that one may enlarge the gaps if one has a
long time wandering set of intervals. Let us formalize this simple idea.

Given n ∈ N one says that a compact subset X ∈
⋃r

1 Ii is n-wandering if

• X is contained in the definition domain of ψn;

• for every 0 ≤ i < j ≤ n the iterates ψi(X) and ψj(X) are disjoint.

For every compact subset X ⊂ K and every n > 0 we denote by Vn(X) the union of the n-generation
interval intersecting X. Notice that Vn(X) is a neighborhood of X. Furthermore, the family {Vn(X)}n∈N
is a base of neighborhood of X.

One easily verifies:

Lemme 4.13. For every n ∈ N and every n-wandering set X ⊂ K there is m ∈ N such that Vm(X) is
n-wandering.

As a direct coroallary of Lemma 4.10 is:

Corollaire 4.14. Let (K,ψ, I) be a dynamical Cantor set endowed with a Markov partition I = {Ii},
n > 0 and X ⊂ K a n-wandering set. Given every ε > 0 there is m and a dynamical Cantor set
(K ′, ψ′, I ′) such that

• the C1-distance between (K,ψ, I) and (K ′, ψ′, I ′) is less that ε

• Vm(X) is n-wandering
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• let V ′m(X ′) denote the continuation of Vm(X); its a n-wandering set for ψ′. Then the restriction
of ψ′ each component of

⋃n−1
j=0 (ψ′)j(V ′m(X ′)) is affine.

• a(K ′) ≥ a(K) and A(K) ≥ A(K ′);

Proof : 2

We can now state the perturbation lemma.

Proposition 4.15. Let (K,U, ψ, I) be a C2-dynamical Cantor set and denote c(K) = 2λ(K)
a(K) . Given

ε > 0 one denotes nε =
⌈
c(K) logε

−1

ε

⌉
. Then given any nε-wandering compact subset X ⊂ K, and every

N ∈ N there is n ≥ N and a a dynamical Cantor set (K ′, U, ψ′, I) with the following properties:

• VnX,ψ is nε-wandering;

• the C1-distance between (K,U, ψ, I) and (K ′, U, ψ′, I) is less than ε

• Vn(X,ψ) = V(X
′, ψ′) where X ′ is the continuation of X;

• for every component I of Vn(X) and every 0 ≤ n < nvarepsilon one has (ψ′)n(I) = ψn(I);

• for every component I of Vn(X) one has a(I) ≥ 1− ε

• a(K ′) ≥ a(K) and A(K ′) ≥ A(K)

Proof : We first chose N such that VN (X) is nε wandering, and such that the linerarization K0 of K
by using Lemma 4.10 is an ε/100 perturbation of K. Recal that a(K0) ≥ a(K). Notice that K0 satisfies
all the announced properties but one: we do not ensures that, for every component I of Vn(X) one has
a(I) ≥ 1− ε.

We prooceed now exactly as in the proof of Theorem 4.1 using Lemma 4.12. 2

4.4 Hausdorff dimension and intersection

4.4.1 Definition

I will not give a precise, formal, definition of the Hausdorff dimension. Let me just try to give an idea.
Given some α > 0, for any finite covering U = {Ui} of K we associated the sum Hα(U) =

∑n
1 δ(Ui)

α

where δ denotes the diameter of Ui. One denotes δ(U) the max of the δ(Ui).
Then one denotes Hα,δ(K) = inf{Hα(U), δ(U) < δ}. This number is clearly decreasing with δ: if δ is

smaller, the infinimum is considered on a smaller set, so it is larger. Then the limit is well defined and
one denotes by Hα(K) the limit. The number Hα(K) is clearly deacrising with α. In fact one verifies
easily that

lim
δ→0

Hα,δ(K)
Hβ,δ(K)

= 0, ∀0 < β < α

One deduce the existence of a unique number H(K) such that Hα(K) = +∞ for α < Hα(K) and
Hα(K) = 0 for α > Hα(K). This number H(K) is the Hausdorff dimension of K.

Example 1. Consider the affine dynamical Cantor set on [0, 1] defined by two affine maps from [0, α]→
[0, 1] and [1− α, 1]→ [0, 1]. There are 2n intervals of generation n, all of them of diameter αn. For this
specific cover on has Ht(Un) = 2n.αnt = (2αt)n. The unique choice for this limit beeing different from 0
and ∞ is 2αt = 1 that is

t =
log 2
− logα
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4.4.2 Disjoining two Cantor sets with low Hausdorff dimension

Here are some easy properties:

• If φ is a diffeomorphism, then H(K) = H(φ(K)

• if φ is a C1-map then H(φ(K) ≤ H(K)

• H(K × L) = H(K) +H(L)

Corollaire 4.16. • If K,L ⊂ R are compact sets with H(K) +H(L) < 1, then the set of t ∈ R such
that (K + t) ∩ L = ∅ is open and dense.

• More generally, ff K0,K1 . . . ,K` ⊂ R are compact sets with
∑`

0H(Ki) < `, then the set of
t1, . . . , t` ∈ R such that

K0 ∩

(⋂̀
i=1

(Ki + ti)

)
= ∅

is open and dense.

Proof : This set is open because K and L are compact. The complement is the set of t such that
(K + t) ∩ L 6= ∅ that is t ∈ L −K. L −K is the projection of K × L ⊂ R2 by (x, y) 7→ x − y. Hence
H(L − K) ≤ H(K) + H(L) < 1. In particular, L − K has empty interior, proving the density of its
complement.

More generally, K0 ∩ (K1 + t1)∩ · · · ∩ (K` + t`) 6= ∅ means that there is (x0, x1, . . . , x`) ∈
∏`

0Ki such
that ti = x0 − xi. In other words (t1, . . . , t`) belongs to the projection of K0 × · · · ×K` ⊂ R`+1 → R` by
(x0, x1 . . . , x`) 7→ (x1−x0, . . . , x0−x`). This projection has a dimension strictly less that `, by hypothesis
so that the projection has empty interior. 2

This lemma shows that the theorem is easy if H(K) + H(L) < 1. Indeed, in that case, one notices
that Kt = K + t is the dynamical Cantor set associted to the map htψh

−1
t obtained by conjugating ψ

by the translation ht. Furthermore, for small t, Kt is a small perturbation of K. Now, there is a dense
open subset of t for which Kt ∩ L = ∅.

Hence the difficulty of the theorem starts with dynamical Cantor set K L such that H(K)+H(L) > 1.

4.5 Disjoining Cantor sets K, L such that L has low Hausdorff dimension:
H(L) < 1

2

In this section, we present an easier case. I am not telling easy, because even this case presents many
difficulties.

Let Lα be the Cantor set on [0, 1] defined on [0, 1] by the map ψ : [0, α]∪ [1−α, 1]→ [0, 1] defined by
t ∈ [0, α] 7→ t

α and 1− t ∈ [1− α, 1] 7→ t
α . Then

H(Lα) <
1
2
⇐⇒ α <

1
4
.

The Cantor set L has regular intervals and gaps:

Remark 4.17. For every i ≥ 0 Each point x ∈ L belongs to an interval of the construction I of size αi,
such that the adjacent gaps have each length larger than 2αi.

Let (K,ϕ) be a dynamical Cantor set. We want to push K in the gaps of L. However, if H(K) is close
to 1, so that H(K) +H(L) > 1 that is not possible without changing the geometry of K: the tranlated
Cantor sets K + t, and more generally every Cantor set K ′ in a C2 neighborhood of K, will meet L. We
will enlarge gaps of K, so that the remaining intervals of the construction will be small and we will push
this intervals in the gaps of L. However one cannot enlarge all the gaps of K. We will choose a set of
gaps that we will enlarge.
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For that there is a simple idea: K varies continuously with ϕ and K∩L varies upper semi continuously
with ϕ. We are just interested in enlarging gaps for a set of intervals of the construction which cover
K ∩ L. However, as explained in Proposition 4.15 one may enlarge a set of gaps if they are contained in
a set of intervals whose iterates remains pairwise disjoint from a long time.

4.5.1 separating the iterates of K ∩ L

We will prove:

Lemme 4.18. For any C2-generic dynamical Cantor set (K,ϕ) one has that K ∩ L has all its iterates
ϕi(K ∩ L) pairwizse disjoint:

∀i, j ∈ N, i 6= j =⇒ ϕi(K ∩ L) ∩ ϕj(K ∩ L) = ∅.

For that we will prove

Lemme 4.19. Given any C2- dynamical Cantor set (K0, ϕ) and n ∈ N, there is K arbitrarilly C2-close
to K0 such that

∀1 ≤ i ≤ n, ϕi(K ∩ L) ∩K ∩ L = ∅.

We will prove this lemma by induction on n. Let us first show the case n = 1: one just want to
separate ψ(K ∩ L) from K ∩ L.

K ∩ L and hence ψ(K ∩ L) have a Hausdordrf dimension smaller than 1
2 because H(L) < 1

2 . Hence
small translation of ψ(K ∩ L) are disjoint from K ∩ L. It seems enough to change ψ by some ψ + t.
Indeed tis works, but it is not so easy, because changing ψ by ψ+ t changes K hence changes K ∩L , so
that (ψ + t)(K ∩ L) is not the tranlation by t of ψ(K ∩ L)
Proof : Let U be a compact neighborhood of K on which ψ is defined. Now L ∩ U and ψ(L ∩ U) are
Cantor set whose Hausdorff dimension is less that 1

2 . As a consequence, for a open and dense value of t,
(ψ + t)(L ∩ U) is disjoint from L. Hence (ψ + t)(Kt ∩ L) is disjoint from Kt ∩ L where Kt is defined by
ψ + t.

One assume now that ∀1 ≤ i ≤ n− 1, ϕi(K ∩ L) ∩K ∩ L = ∅, and we want to show that ϕn(K ∩ L).
The difficulty here is that, replacing ψ by ψ + t does not turn ψn into ψn + t.

Notice that ϕi(K∩L), 0 ≤ i ≤ n−1 are dijoint compact sets. We chose a small compact neighborhood
U0 of K ∩ L such that ψi is define on U0 and the Ui = ψi(U0) are dijoint for 0 ≤ i ≤ n− 1.

For every small t there is a C2-small perturbation ψt of ψ such that ψt)ψ on Ui for 0 ≤ i ≤ n− 2 but
ψt = ψ + t on Un−1. Then (ψt)n = ψn + t on U0. Hence, for an open and dense value of small t one gets
that ψnt (L ∩ U0) ∩ L = ∅.

However, K ∩ L varies uper semi continuously. So for small t Kt ∩ L) ⊂ U0. One deduces ψnt (Kt ∩
L) ∩ L = ∅ ending the proof. 2

4.5.2 Opening gaps

Then by using Proposition 4.15 and lemma 4.18 we will get

Lemme 4.20. Le (K,ϕ) be C2 dynamical Cantor set. Then given any ε > 0, there is (K ′, ϕ′) arbitrarily
C1-close to K and n, such that K ′ ∩ L is covered by disjoint intervals Ii of the construction of K ′ with
the following properties:

• Ii is of generation n (hence Ii ∩ Ij = ∅)

• the gaps adjacent Ii have length larger that A(K)`(Ii)

• Ii contains a gap of length larger that (1− ε)`(Ii).

• `(Ii) < ε
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4.5.3 Separating K from L

Let us end the proof of the Theorem in that case. Every point in K ′ ∩ L belongs to an intervals Ii of
the construction of K ′ and to an interval of the construction J of L with `(J)/`(Ii) ∈ [ε, α−1ε]. Let I+

i

and I−i be the two connected components of Ii \ u′Ii (that is after removing th large gap of Ii). This
components have a length smaller than ε`(Ii).

A small conjugacy of ψ with support on the union of Ii and of its adjacent gaps will change K ′ such
that the continuaotions of I+

i and I−i will now be in the gaps of J . This ends the proofs in that case.

4.5.4 Generalization to any dynamical Cantor set L with H(L) < 1
2 .

We prove the theorem using very specipic Cantor sets Lα. However, in Section 4.5.1 we just used the
fact that H(L) < 1

2 , and the following section just used the fact that the iterates of K ∩ L are disjoint.
Hence we just used this the specificity of L in the last section for having the following property:

There are constant A(L) > 0 and α ∈ (0, 1) such that, for every ε > 0 small enough, any point of
L belongs to an interval J of the construction whose length `(J) belongs to [ε, α−1ε] and such that the
adjacents gaps are larger than `(J).A(L).

One easily verifiez that every locally affine, and more generally every C2-dynamical Cantor set satisfies
these properties. Hence we proved the theorem for any C2-Cantor set L with H(L) < 1

2 .

4.6 the general case

The general case follows the same spirit. Up to performing a small perturbation, one may assume that
L is locally affine.

4.6.1 Empty intersection of a large number n ≥ k of iterates ψij (K ∩ L), 0 ≤ j ≤ n

If H(L) > 1
2 , one cannot disjoint K ∩ L from ψ(KL) just by changing ψ by ψ + t, for some small t,

because H(K ∩ L) +H(ψ(KL)) can be larger than 1.
Let k such that (k+ 1)H(L) < k. Then according to Lemma 4.16 small translations can make empty

the intersection of n iterates ψi(K ∩ L). However we need to perform a dynamical perturbation, and it
is not possible to perform independent perturbations of different iterates of K ∩L if these iterate are not
disjoint. For this reason Moreira states in fact a stronger result.

For any i ∈ N, one consider the set of the intervals of the construction where ψi is defined and
injective. Recall that two intervals of the construction are either disjoint or one is contained in the other.
Hence there is a well defined notion of pair (I, i) where I maximal interval of the construction where ψi

is define and injective. We denote by P the set of this pairs (I, i).

Proposition 4.21. For a residual set R of C2-dynamical Cantor sets K, given any k + 1 different
elements (I0, i0), . . . , (Ik, ik) ∈ P, then

k⋂
j=0

ψij (Ij ∩K ∩ L) = ∅

As, for any i, the Cantor set K can be covered by interval I with (I, i) ∈ P, the Proposition implies
directly

Corollaire 4.22. For any K ∈ R and for any i0 < i1 < · · · < ik one has:

k⋂
j=0

ψij (K ∩ L) = ∅.
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4.6.2 Proof of the Proposition 4.21

Notice that, if K ′ is a perturbation of K then every interval I of the constructuon of K has a continuation
I ′ for K ′. Furthermore, if (I, i) ∈ P the (I ′, i) ∈ P ′.

Hence one may first chose the finite sequence (I0, i0), . . . , (Ik, ik) ∈ P and Proposition 4.21 is a direct
consequence of

Lemme 4.23. For any C2 -dynamical Cantor set K there is K ′ arbitrarily C2-close to K such that

k⋂
j=0

(ψ′)ij (I ′j ∩K ′ ∩ L) = ∅.

SoK is an arbitrary C2-dynamical Cantor set.
First remark that,

Remark 4.24. for Cr-generic K, K ∩ L does not contain any pre-periodic point of ψ

Proof : That is just because the set of preperiodic point is countable. Hence small translation put each
of them in the gaps of L, and for each of them, being out L is robust. 2

Hence one may assume that K ∩ L does not contain any pre-periodic point of ψ.

Lemme 4.25. Let x ∈
⋂k
j=0(ψ)ij (Ij ∩K ∩L), and for every j let yj ∈ Ij ∩K ∩L such that ψij (yj) = x.

Then, for j 6= h one has yj 6= yh.

Proof : If y = yj = yh then Ij ∩ Ih 6= ∅. As (Ij , ij) 6= (Ih, ih) this implies that ij 6= ih, for instance
ij < ih. Hence x = ψij (y) = ψih(y) one gets x = ψih−ij (x), so y ∈ KcapL is preperiodic contradicting
the fact that K ∩ L does not contain any preperiodic point. 2

So for every x ∈
⋂k
j=0(ψ)ij (Ij ∩K ∩L), there are intervals of the construction Jj(x), 0 ≤ j ≤ k, such

that

(J.1) Jj(x) ⊂ Ij

(J.2) yj ∈ Jj

(J.3) for j 6= h, Jj(x) ∩ Jh(x) = ∅.

(J.4) for every j, the iterates ψt(Jj(x)), t ∈ {0, . . . , ij} are pairwize disjoint.

(J.5) if j, h ∈ {0, . . . , k} admits some t ∈ {0, . . . , rj} with ψt(Ij)∩ Ih 6= ∅ then rj > rh. Furthermore, t is
unique.

These properties will help us to perform perturbations of ψ supported on the Jj , with a control of
the interaction between the perturbation. The intervals Jj(x) are neigborhood of yj in K. So ψij (Jj(x))
is a neighborhood of x in K. One deduces

Lemme 4.26. There is ε(x) and a C1-neighborhood V(x) of K such that for every (K ′, ψ′) ∈ V(x) one
has

K ′ ∩ [x− ε(x), x+ ε(x)] ⊂ (ψ′)ij (J ′j(x))

where J ′j(x) is the continuation of Jj(x) for K ′.

As a direct consequence one gets

Corollaire 4.27. For every (K ′, ψ′) ∈ V(x) one has k⋂
j=0

(ψ′)ij (I ′j ∩K ′ ∩ L)

 ∩ [x− ε(x), x+ ε(x)] ⊂
k⋂
j=0

(ψ′)ij (J ′j(x) ∩K ′ ∩ L).
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We fix a finite covering of
⋂k
j=0(ψ)ij (Ij ∩K ∩ L) by intervals [x− ε(x), x+ ε(x)], x ∈ X where X is

a finite subset of
⋂k
j=0(ψ)ij (Ij ∩K ∩ L). One denotes Ṽ =

⋂
x∈X V(x); it is a C1-neighborhood of K.

Remark 4.28. The map K ′ 7→
⋂k
j=0(ψ′)ij (I ′j ∩K ′ ∩ L) is upper-semi continuous.

As a consequence of this remark, there is a C1-neighborhood V ⊂ Ṽ of K such that, for every K ′ ∈ V
one has

k⋂
j=0

(ψ′)ij (I ′j ∩K ′ ∩ L) ⊂
⋃
x∈X

[x− ε(x), x+ ε(x)].

Hence
k⋂
j=0

(ψ′)ij (I ′j ∩K ′ ∩ L) ⊂
⋃
x∈X

 k⋂
j=0

(ψ′)ij (J ′j(x) ∩K ′ ∩ L)

 .

Now Lemma 4.23 follows directly from the following lemma:

Lemme 4.29. For every x ∈ X there is a C1-open and C2-dense subset Vx of V such that for every
K ′ ∈ Vx one has

k⋂
j=0

(ψ′)ij (J ′j(x) ∩K ′ ∩ L) = ∅.

This property is clearly C1-open. It remains to prove the C2-density. In ordre to simplify the notation,
we now denote by K an arbitrar dynamical Cantor sets in V.

Just because the properties (J.3) (J.4) and (J.5) of the intervals Jj(x) , one verifies:

Lemme 4.30. For any t = (t0, t1, . . . tk) small enough, there is a C2-small perturbation ψt of ψ such
that, for every j ∈ {0, . . . , , k}, the restriction of (ψt)ij to Jt,j(x) is ψij + tj.

Proof : We proceed by induction. Up to re-indexing the Jj we can assume that the times ij are
increasing. Then one defines:

• ψ0 = ψ(t0,0,...,0) by ψ0 = ψ out a small neighborhood of J0 and ψ0 = ψ1−i0 ◦ (ψ + t0) ◦ ψi0−1 on a
smaller neighborhood of J0

• ψj = ψ(t0,t1,...,tj ,0...,0) by ψj = ψj−1 out a small neighborhood of Jj and ψj = ψ
1−ij
j−1 ◦ (ψj−1 + tj) ◦

ψi0−1
j−1 on a smaller neighborhood of J0.

2

One concludes by recalling Corollary 4.16: for an open and dense subset of t the intersection
⋂k
j=0(ψij (L)+

tj) is empty.

4.6.3 Decreasing the number of iterates ψij (K ∩ L), 0 ≤ j ≤ n needed for having an empty
intersection.

Remark 4.31. The maps K 7→ a(K) and K 7→ A(K) are upper semi continuous when K vaires in the
C1-topology (even in the C0 one) becau they are defined as infimum of continuous functions.

As a consequence of the remark above the set

Ka = {C1-dynamical Cantor set with a(K) ≥ aandA(K) ≥ a}

is a close subset of the set of C1-dynamical Cantor sets. In particular it is a Bair space.
As a consequence of Proposition 4.21 and Corollary 4.22 one gets
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Corollaire 4.32. There is a residual set Ra,k of Ka, such that, for any K ∈ Ra,k and for any i0 < i1 <
· · · < ik one has:

k⋂
j=0

ψij (K ∩ L) = ∅.

Proof : The set with this property is clearly a Gδ. It remains to see that it is dense. The idea is
the following: given K ∈ Ka one may approach K in the C1 topology by K1 which is locally affine
(in particular is C2) and such that a(K1) ≥ a(K) and A(K1) ≥ A(K). Then one can approach K1 by
K2 locally affine, with a(K2) > a(K1) and A(K2) > A(K). Then Corollary 4.22 asserts that K2 is C2

approached by K3 with the announced property. As the functions a and A vary continously for the C2

topology, one gets that K3 belongs to Ka, ending the proof. 2

We ends the proof of the theorem by the following proposition

Proposition 4.33. Given m ≥ 1, assume that there is a residual set Ra,m of Ka, such that, for any
K ∈ Ra,m and for any i0 < i1 < · · · < im one has:

m⋂
j=0

ψij (K ∩ L) = ∅.

Then there is a residual set Ra,m−1 of Ka, such that, for any K ∈ Ra,m−1 and for any i0 < i1 <
· · · < im−1 one has:

m−1⋂
j=0

ψij (K ∩ L) = ∅.

Theorem 4.3 is the corresponding statement for m = 0, hence is a consequence of a straightforward in-
duction argument using Corollary 4.32 (for starting the induction) and Proposition 4.33 (for the induction
steps).

4.6.4 Proof of Proposition 4.33

Given m ≥ 1, assume that there is a residual set Ra,m of Ka, such that, for any K ∈ Ra,m and for any
i0 < i1 < · · · < im one has:

m⋂
j=0

ψij (K ∩ L) = ∅.

Fix now 0 ≤ i0 < i1 < · · · < im−1. We need to proove

Lemme 4.34. There is a C1open subset cO of Ka, such that, for any K ∈ O one has:

m−1⋂
j=0

ψij (K ∩ L) = ∅.

The openess is trivial, we just have to proof the density. We may start with K ∈ Ra,m. As a
consquence, for any r < s ∈ N one has

ψr(
m−1⋂
j=0

ψij (K ∩ L)) ∩ ψs(
m−1⋂
j=0

ψij (K ∩ L)) = ∅

, because this intersection maybe written as an intersection of m+ 1 iterates of K ∩ L.
So all the iterates of

⋂m−1
j=0 ψij (K ∩ L) are pairwise disjoint. Hence it satisfies the hypothesis of

Proposition 4.15.
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So in rough words, we cover the intersection by intervall of the construction and we perfor a pertur-
bation, without decreasing a nor A, in order to get arbitrarily large gaps. We gets similar gaps in the all
pre-images by ψi0 of this in intervals. Now performing a perturbation by conjugacy which is an isometry
on the pri-images of intervals one puts the connected components of the complements of the large gaps in
the gaps of L. The announced perturbation does not change a nor A but make the announce intersection
empty, ending the proof.
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classiques Gauthier-Villars, librairie Blanchard, Paris, (1987).

[PS] Pujals, Enrique R.; Sambarino, Martn Homoclinic tangencies and hyperbolicity for surface dif-
feomorphisms. Ann. of Math. (2) 151 (2000), no. 3, 961–1023.

[Sh] M. Shub,Topological transitive diffeomorphism on T 4, Lect. Notes in Math., 206, 39 (1971).
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