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Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
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Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
Theorem B. (logarithm law for the hitting time) For each
regular x0 s.t. the local dimension dµX

(x0) is defined it
holds

lim
r→0

log τr(x, x0)

− log r
= dµX

(x0) − 1 a.e. starting point x.
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Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
Theorem B. (logarithm law for the hitting time) For each
regular x0 s.t. the local dimension dµX

(x0) is defined it
holds

lim
r→0

log τr(x, x0)

− log r
= dµX

(x0) − 1 a.e. starting point x.

Remark. Theorems A and B hold for a more general class
of flows, defined axiomatically.
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Recall: First lecture

• Motivation : Lorenz’ equations

X(x, y, z) =











ẋ = −10 · x+ 10 · y

ẏ = 28 · x− y − x · z

ż = −8/3 · z + x · y .
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Recall: First lecture

• Motivation : Lorenz’ equations

X(x, y, z) =











ẋ = −10 · x+ 10 · y

ẏ = 28 · x− y − x · z

ż = −8/3 · z + x · y .

• Construction of a Lorenz geom. flow and we described
its main properties.
• The Poincaré map F has the form

F (x, , y) = (f(x), g(x, y))
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Recall: First lecture

• Motivation : Lorenz’ equations

X(x, y, z) =











ẋ = −10 · x+ 10 · y

ẏ = 28 · x− y − x · z

ż = −8/3 · z + x · y .

• Construction of a Lorenz geom. flow and we described
its main properties.
• The Poincaré map F has the form

F (x, , y) = (f(x), g(x, y))

• One may think of f(x) = xα, g(x, y) = y · xβ, with
1
2 < α = −λ3

λ1
< 1 < β = −λ2

λ1
, λ2 > λ1 > −λ3 > 0.
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Recall: Second lecture I

• The first return map F has a SRB measure µF that
induces a SRB measure µX for the the flow
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• The first return map F has a SRB measure µF that
induces a SRB measure µX for the the flow

Method for a geometrical Lorenz flow:
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Recall: Second lecture I

• The first return map F has a SRB measure µF that
induces a SRB measure µX for the the flow

Method for a geometrical Lorenz flow:

• f has µf which induces µF for F which, on its turn,
induces µX for the flow.
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Recall: Third lecture I

• The Poincaré map F (x, y) = (f(x), g(x, y) of a geom.
Lorenz attractor has exponential decay of correlations.
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Recall: Third lecture I

• The Poincaré map F (x, y) = (f(x), g(x, y) of a geom.
Lorenz attractor has exponential decay of correlations.
Method: use W-K distance :

W1(µ1, µ2) = sup
g∈Lip1(M)

(

|

∫

M

gdµ1 −

∫

M

gdµ2|
)
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Recall: Third lecture I

• The Poincaré map F (x, y) = (f(x), g(x, y) of a geom.
Lorenz attractor has exponential decay of correlations.
Method: use W-K distance :

W1(µ1, µ2) = sup
g∈Lip1(M)

(

|

∫

M

gdµ1 −

∫

M

gdµ2|
)

• Let C(f, g) be the correlation function:

C(f, g) = |

∫

g(Fn(x))f(x)dm−

∫

g(x)dµ

∫

f(x)dm|
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Recall: Third lecture II

• Strategy: relate C(f, g) to W-K distance
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Recall: Third lecture II

• Strategy: relate C(f, g) to W-K distance

(1) for µ1 ≪ µ and dµ1 = f(x)dµ

C(f, g) ≤ L(g) · ‖f‖1 ·W1((F
∗)n(µ1), µ)
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Recall: Third lecture II

• Strategy: relate C(f, g) to W-K distance

(1) for µ1 ≪ µ and dµ1 = f(x)dµ

C(f, g) ≤ L(g) · ‖f‖1 ·W1((F
∗)n(µ1), µ)

(2) W1((F
∗)n(µ1), µ) ≤ 2 · C · Φ(n)
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Recall: Third lecture II

• Strategy: relate C(f, g) to W-K distance

(1) for µ1 ≪ µ and dµ1 = f(x)dµ

C(f, g) ≤ L(g) · ‖f‖1 ·W1((F
∗)n(µ1), µ)

(2) W1((F
∗)n(µ1), µ) ≤ 2 · C · Φ(n)

(3) W1(µ
1, µ2) ≤ ǫ+ δ, µi : invariant measures for F

Lorenz like flows-Last Lecture – p. 6



Recall: Third lecture II

• Strategy: relate C(f, g) to W-K distance

(1) for µ1 ≪ µ and dµ1 = f(x)dµ

C(f, g) ≤ L(g) · ‖f‖1 ·W1((F
∗)n(µ1), µ)

(2) W1((F
∗)n(µ1), µ) ≤ 2 · C · Φ(n)

(3) W1(µ
1, µ2) ≤ ǫ+ δ, µi : invariant measures for F

(4) W1(F
∗(µ), F ∗(ν)) ≤ λ ·W1(µ, ν).
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Proof-1

Let γx ∈ Fs with coordinate x. The density f , by (*) is BV
and ‖f‖BV ≤ Kℓ+ 1 ≤ (K + 1)ℓ.
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Proof-1

Let γx ∈ Fs with coordinate x. The density f , by (*) is BV
and ‖f‖BV ≤ Kℓ+ 1 ≤ (K + 1)ℓ.
Let νx = fm be the measure on the x-axis with density f (m:
the Lebesgue measure). Let T = fLo and g ∈ L1([−1

2 ,
1
2 ]).
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Proof-1

Let γx ∈ Fs with coordinate x. The density f , by (*) is BV
and ‖f‖BV ≤ Kℓ+ 1 ≤ (K + 1)ℓ.
Let νx = fm be the measure on the x-axis with density f (m:
the Lebesgue measure). Let T = fLo and g ∈ L1([−1

2 ,
1
2 ]).

Since
|
∫

g d(T ∗n(νx)) −
∫

g dµx| = |
∫

g(Tn(x))f(x)dm−
∫

g(x)dµx|,
and T has exponential decay implies

|

∫

gd(T ∗n(νx)) −

∫

gdµx| ≤ ‖g‖L1
· ‖f‖BV · C · e−λn.
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Proof-2

Thus

sup
‖g‖∞≤1

|

∫

gdT ∗n(νx) −

∫

gdµx| ≤ ‖f‖BV · C · e−λn ≤

(K + 1) · ℓ · C · e−λn.
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Proof-2

Thus

sup
‖g‖∞≤1

|

∫

gdT ∗n(νx) −

∫

gdµx| ≤ ‖f‖BV · C · e−λn ≤

(K + 1) · ℓ · C · e−λn.

so item (2) at Proposition 3 is satisfied with exponential
bound depending on the Lipschitz constant ℓ of f .
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Proof-3

Let νn = F ∗nν as before. Since F sends vertical leaves into
vertical ones then there is a family of probability measures
νn
γ on vertical leaves such that

(F ∗nν)(g) =

∫

γ∈I

∫

γ

g(∗)dνn
γ d((T

∗n(νx))).
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Proof-3

Let νn = F ∗nν as before. Since F sends vertical leaves into
vertical ones then there is a family of probability measures
νn
γ on vertical leaves such that

(F ∗nν)(g) =

∫

γ∈I

∫

γ

g(∗)dνn
γ d((T

∗n(νx))).

To satisfy item (1) at Proposition 3 and hence conclude the
statement we only have to prove that there are C2, λ2 s.t.

∀γ ∈ Fs, W1(ν
n
γ , µγ) ≤ C2 · e

−λ2n.

This is done by induction on n and using the preperties of
W −K distance.
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Now we start

Final lecture :

Proof of Theorems A and B
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Hitting time

Let x, x0 ∈ R
3 and

τXt

r (x, x0) = inf{t ≥ 0|Xt(x) ∈ Br(x0)}

be the time needed for the X-orbit of a point x to enter for
the first time in a ball Br(x0). The number τXt

r (x, x0) is the
hitting time associated to the flow Xt and Br(x0).
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Hitting time

Let x, x0 ∈ R
3 and

τXt

r (x, x0) = inf{t ≥ 0|Xt(x) ∈ Br(x0)}

be the time needed for the X-orbit of a point x to enter for
the first time in a ball Br(x0). The number τXt

r (x, x0) is the
hitting time associated to the flow Xt and Br(x0).

If x, x0 ∈ Σ and BΣ
r (x0) = Br(x0) ∩ Σ, we define

τΣ
r (x, x0) = min{n ∈ N

+;Fn(x) ∈ BΣ
r (x0)} :

the hitting time associated to the discrete system F .
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Hitting time: flow and section

Given x, t(x) > 0 is the first time s. t. Xt(x)(x) ∈ Σ (the
return time of x to Σ). Relation between τrX(x, x0) and
τΣ
r (x, x0) :
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Hitting time: flow and section

Given x, t(x) > 0 is the first time s. t. Xt(x)(x) ∈ Σ (the
return time of x to Σ). Relation between τrX(x, x0) and
τΣ
r (x, x0) :

Proposition If
∫

Σ t(x) dµF <∞, then, ∃K ≥ 0 and A ⊂ Σ,
µF (A) = 1 s. t. for each x0 ∈ Σ, x ∈ A

c(x, r) · τΣ
Kr(x, x0) ·

∫

Σ
t(x) dµF ≤

τXt

r (x, x0) ≤ c(x, r) · τΣ
r (x, x0) ·

∫

Σ
t(x) dµF

with c(x, r) → 1 as r → 0.
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Proof of Proposition-1

Proof. Assume that x, x0 ∈ Σ, x 6= x0 and r ≤ d(x, x0). Since
the flow cannot hit the section near x0 without entering in a
small ball of the space centered at x0 before, then τΣ

r (x, x0)

and τXt

r (x, x0) are related by

τXt

r (x, x0) ≤

τΣ

r (x,x0)
∑

i=0

t(F i(x)).
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Proof of Proposition-1

Proof. Assume that x, x0 ∈ Σ, x 6= x0 and r ≤ d(x, x0). Since
the flow cannot hit the section near x0 without entering in a
small ball of the space centered at x0 before, then τΣ

r (x, x0)

and τXt

r (x, x0) are related by

τXt

r (x, x0) ≤

τΣ

r (x,x0)
∑

i=0

t(F i(x)).

Since the section is transversal to the flow, ∃ K s. t.

τXt

r (x, x0) ≥





τΣ

Kr(x,x0)
∑

i=0

t(F i(x))



 .
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The last inequality

The last inequality follows by the fact that if the flow at some
time crosses the ball centered at x0 then after a time e(r) it
will cross the section at a distance less than K · r, K
depending on the angle between the flow and the section.
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Birkhoff sum

The above sums are Birkhoff sums of the observable t on
the F -orbit of x and µF is ergodic. Then there is a full
measure set A ⊂ Σ (and x0 /∈ A) such that for x ∈ A,

1

n

n
∑

i=0

t(F i(x)) −→

∫

Σ
t(x) dµF , as n→ ∞
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Birkhoff sum

The above sums are Birkhoff sums of the observable t on
the F -orbit of x and µF is ergodic. Then there is a full
measure set A ⊂ Σ (and x0 /∈ A) such that for x ∈ A,

1

n

n
∑

i=0

t(F i(x)) −→

∫

Σ
t(x) dµF , as n→ ∞

Hence, for x ∈ A,

1

τΣ
r (x, x0)

τΣ

r (x,x0)
∑

i=0

t(F i(x)) −→

∫

Σ
t(x) dµF , as n→ ∞
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Still

Thus we get that for each x ∈ A

τΣ

r (x,x0)
∑

i=0

t(F i(x)) = c(x, r) · τΣ
r (x, x0) ·

∫

Σ
t(x) dµF (1)

with c(x, r) → 1 as r → 0.
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Still

Thus we get that for each x ∈ A

τΣ

r (x,x0)
∑

i=0

t(F i(x)) = c(x, r) · τΣ
r (x, x0) ·

∫

Σ
t(x) dµF (2)

with c(x, r) → 1 as r → 0.

Combining Equations above we finish the proof of the
proposition relating the discret with continuous hitting time.
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Consequence

Let π be the projection on Σ defined before. The above
statement implies the following
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Consequence

Let π be the projection on Σ defined before. The above
statement implies the following

Proposition There is a full measure set B ⊂ R
3 s.t. if x0 ∈ R

3

is regular and x ∈ B it holds

lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (π(x), π(x0))

− log r
.
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Proof of the Proposition

Proof If x0, x ∈ Σ and x ∈ A then

lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (x, x0)

− log r
.
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Proof of the Proposition

Proof If x0, x ∈ Σ and x ∈ A then

lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (x, x0)

− log r
.

If x0 ∈ R
3 is regular, Xt induces a bilipschitz homeo from a

neigh. of π(x0) ∈ Σ to a neigh. of x0.
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Proof of the Proposition

Proof If x0, x ∈ Σ and x ∈ A then

lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (x, x0)

− log r
.

If x0 ∈ R
3 is regular, Xt induces a bilipschitz homeo from a

neigh. of π(x0) ∈ Σ to a neigh. of x0. So ∃ K ≥ 1 s.t.

τX
K−1r(x, π(x0)) + C ≤ τX

r (x, x0) ≤ τX
Kr(x, π(x0)) + C

where C is the time needed to go from π(x0) to x0 by the
flow. This is also true for x ∈ B = π−1(A). Extracting
logarithms and taking the limits we get the required result.

Lorenz like flows-Last Lecture – p. 18



Local dimension: section and flow

Theorem . Let x ∈ R
3 and π(x) be the projection on Σ given

by π(x) = y if x is on the orbit of y ∈ Σ and the orbit from y
to x does not cross Σ (if x ∈ Σ then π(x) = x). For all regular
points x ∈ R

3 it holds

dµX
(x) = dµF

(π(x)) + 1.
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Local dimension: section and flow

Theorem . Let x ∈ R
3 and π(x) be the projection on Σ given

by π(x) = y if x is on the orbit of y ∈ Σ and the orbit from y
to x does not cross Σ (if x ∈ Σ then π(x) = x). For all regular
points x ∈ R

3 it holds

dµX
(x) = dµF

(π(x)) + 1.

Proof For product measures as µX = µF × dt, where dt is
the Lebesgue measure at the line, the formula is trivially
verified.
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Local dimension: section and flow

Theorem . Let x ∈ R
3 and π(x) be the projection on Σ given

by π(x) = y if x is on the orbit of y ∈ Σ and the orbit from y
to x does not cross Σ (if x ∈ Σ then π(x) = x). For all regular
points x ∈ R

3 it holds

dµX
(x) = dµF

(π(x)) + 1.

Proof For product measures as µX = µF × dt, where dt is
the Lebesgue measure at the line, the formula is trivially
verified. By construction, µX = φ∗(dµF × dt), where
φ : R

3 → R
3 is a local bi-Lipschitz map at each regular point.

Since the local dimension is invariant by local bi-Lipschitz
maps, it follows the required inequality.
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A logarithm law for the hitting time

Recall that if (Y, T, µ) is a measure preserving (discrete
time) dynamical system, (X,T, µ) has super-polynomial
decay of correlations with respect to Lipschitz observables if

∣

∣

∣

∣

∫

ϕ ◦ Tnψ · dµ−

∫

ϕ · dµ ·

∫

ψ · dµ

∣

∣

∣

∣

≤ ‖ϕ‖ · ‖ψ‖ · θn,

limn θn · np = 0∀ p > 0 and ‖ · ‖:Lipschitz norm.
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A logarithm law for the hitting time

Recall that if (Y, T, µ) is a measure preserving (discrete
time) dynamical system, (X,T, µ) has super-polynomial
decay of correlations with respect to Lipschitz observables if

∣

∣

∣

∣

∫

ϕ ◦ Tnψ · dµ−

∫

ϕ · dµ ·

∫

ψ · dµ

∣

∣

∣

∣

≤ ‖ϕ‖ · ‖ψ‖ · θn,

limn θn · np = 0∀ p > 0 and ‖ · ‖:Lipschitz norm.
Theorem(Galatolo) Let (Y, T, µ) a measure preserving
transformation having superpolynomial decay of
correlations. If dµ(x0) is defined then for µ-almost x ∈ Y ,

lim
r→0

log τr(x, x0)

− log r
= dµ(x0).
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Log law hitting for geom Lorenz flow

Applying this to the 2-dimensional Lorenz system (Σ, F, µF )
which has exponential decay of correlations, we conclude :
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Log law hitting for geom Lorenz flow

Applying this to the 2-dimensional Lorenz system (Σ, F, µF )
which has exponential decay of correlations, we conclude :

Theorem Let F : Σ → Σ be the Poincaré map associated to
a geom. Lorenz flow. For x0 ∈ Σ s.t. dµF

(x0) exists then for
µF -almost x ∈ Σ.

lim
r→0

log τΣ
r (x, x0)

− log r
= dµF

(x0).
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Local dimension:section and flow-2

Since we have

lim
r→0

log τr(x, x0)

− log r
= lim

r→0

log τr,Σ(x, x0)

− log r
= dµF (x0)
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Local dimension:section and flow-2

Since we have

lim
r→0

log τr(x, x0)

− log r
= lim

r→0

log τr,Σ(x, x0)

− log r
= dµF (x0)

And dµF (x0) = dµX(x0) − 1, we finally get
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Local dimension:section and flow-2

Since we have

lim
r→0

log τr(x, x0)

− log r
= lim

r→0

log τr,Σ(x, x0)

− log r
= dµF (x0)

And dµF (x0) = dµX(x0) − 1, we finally get

limr→0
log τr(x, x0)

− log r
= dµX(x0) − 1,

proving Theorem B.
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Recurrence time

In the definition of hitting time, if you take x0 = x, then the
resulting expression is the recurrencce time, denoted by

τ ′r(x) = τr(x, x)

Using the next result by Saussol, we get a similar logarithm
law for the recurrence time.
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Saussol’s result

(Y, T, µ): a measure preserving dynamical system,
hµ(T ) > 0 and T is s.t. ∃ a partition A into open sets s.t. for
A ∈ A, T |A is Lipschitz with constant LT (A).Suppose:
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Saussol’s result

(Y, T, µ): a measure preserving dynamical system,
hµ(T ) > 0 and T is s.t. ∃ a partition A into open sets s.t. for
A ∈ A, T |A is Lipschitz with constant LT (A).Suppose:

(1) if S(A) = ∪{∂A ∈ A} ∃ c > 0, a > 0 s.t.

µ ({x ∈ X : dist(x,S(A)) < ǫ}) < c · ǫa.
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Saussol’s result

(Y, T, µ): a measure preserving dynamical system,
hµ(T ) > 0 and T is s.t. ∃ a partition A into open sets s.t. for
A ∈ A, T |A is Lipschitz with constant LT (A).Suppose:

(1) if S(A) = ∪{∂A ∈ A} ∃ c > 0, a > 0 s.t.

µ ({x ∈ X : dist(x,S(A)) < ǫ}) < c · ǫa.

(2)
∑

A∈A µ(A) log+ LT (A) <∞,
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Saussol’s result

(Y, T, µ): a measure preserving dynamical system,
hµ(T ) > 0 and T is s.t. ∃ a partition A into open sets s.t. for
A ∈ A, T |A is Lipschitz with constant LT (A).Suppose:

(1) if S(A) = ∪{∂A ∈ A} ∃ c > 0, a > 0 s.t.

µ ({x ∈ X : dist(x,S(A)) < ǫ}) < c · ǫa.

(2)
∑

A∈A µ(A) log+ LT (A) <∞,

1. T has super-polyn decay with resp. to Lipschitz observ.
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Saussol’s result

(Y, T, µ): a measure preserving dynamical system,
hµ(T ) > 0 and T is s.t. ∃ a partition A into open sets s.t. for
A ∈ A, T |A is Lipschitz with constant LT (A).Suppose:

(1) if S(A) = ∪{∂A ∈ A} ∃ c > 0, a > 0 s.t.

µ ({x ∈ X : dist(x,S(A)) < ǫ}) < c · ǫa.

(2)
∑

A∈A µ(A) log+ LT (A) <∞,

1. T has super-polyn decay with resp. to Lipschitz observ.

Then

lim inf
r→0

log τr(x, x)

− log r
= d−µ (x) , and lim sup

r→0

log τr(x, x)

− log r
= d+

µ (x) a.e.
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Lorenz geo systems

Theorem The first return map (F,Σ, µF ) of the geometric
Lorenz system satisfies the hypothesis above.
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Lorenz geo systems

Theorem The first return map (F,Σ, µF ) of the geometric
Lorenz system satisfies the hypothesis above.
Proof As (F,Σ, µF ) is exponentially mixing, item (3) is
satisfied.
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Lorenz geo systems

Theorem The first return map (F,Σ, µF ) of the geometric
Lorenz system satisfies the hypothesis above.
Proof As (F,Σ, µF ) is exponentially mixing, item (3) is
satisfied.
The partition A = {Ai}, with

Ai = [

(

1

i+ 2
,

1

i+ 1

)

∪

(

−1

i+ 2
,
−1

i+ 1

)

] × I̊ , i ∈ N
+

satisfies (1) and (2).
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Still

The fact that µF has a bounded density marginal (the
density will be denoted by f0) on the x direction implies that
the measure of the sets Ai can be estimated by

µ(Ai) ≤
4 · sup(f0)

i2
.

Thus,

∑

A∈S(A)

log+ LF (A) ·µ(A) =
∑

A∈S(A)

log+(K ·iβ) ·
4 · sup(f0)

i2
<∞.

This finishes the proof.

Lorenz like flows-Last Lecture – p. 26



Log law

Corollary For the geo. Lorenz system (F,Σ, µF ) it holds

lim inf
r→0

log τΣ
r (x, x)

− log r
= dµF

, lim sup
r→0

log τΣ
r (x, x)

− log r
= dµF

, µF − a.e. .
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Log law

Corollary For the geo. Lorenz system (F,Σ, µF ) it holds

lim inf
r→0

log τΣ
r (x, x)

− log r
= dµF

, lim sup
r→0

log τΣ
r (x, x)

− log r
= dµF

, µF − a.e. .

Remarking that regular points have full measure we get
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Log law

Corollary For the geo. Lorenz system (F,Σ, µF ) it holds

lim inf
r→0

log τΣ
r (x, x)

− log r
= dµF

, lim sup
r→0

log τΣ
r (x, x)

− log r
= dµF

, µF − a.e. .

Remarking that regular points have full measure we get

Corollary For the geometric Lorenz flow it holds

lim inf
r→0

log τ ′r(x)

− log r
= dµX

−1, lim sup
r→0

log τ ′r(x)

− log r
= dµX

−1, µX − a.e.

where τ ′ is the recurrence time for the flow.
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Main reference

We suggest to the interested reader the paper below and
the references therein:

S. Galatolo and M. J. Pacifico, Lorenz like flows:
exponential decay of correlations for the Poincaré map,
logarithm law, quantitative recurrence, Ergodic Theory and
Dynamical Systems, to appear
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Finally

This is the end.

Many thanks to the organizers!!!!

Many thanks to the audience!!!!!
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