Lorenz like flows-Third Lecture

Maria José Pacifico

pacifico@im.ufrj.br

IM-UFRJ Rio de Janeiro - Brasil

Main goals

The main goal is to explain the results (Galatolo-P) Theorem A. (decay of correlation for the Poincaré map) Let F be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of F has exponential decay of correlation with respect to Lipschitz observables.

Main goals

The main goal is to explain the results (Galatolo-P) **Theorem A.** (decay of correlation for the Poincaré map) Let *F* be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of *F* has exponential decay of correlation with respect to Lipschitz observables.

Theorem B. (logarithm law for the hitting time) For each regular x_0 s.t. the local dimension $d_{\mu_X}(x_0)$ is defined it holds

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = d_{\mu_X}(x_0) - 1 \quad \text{a.e. starting point } x.$$

Main goals

The main goal is to explain the results (Galatolo-P) **Theorem A.** (decay of correlation for the Poincaré map) Let *F* be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of *F* has exponential decay of correlation with respect to Lipschitz observables.

Theorem B. (logarithm law for the hitting time) For each regular x_0 s.t. the local dimension $d_{\mu_X}(x_0)$ is defined it holds

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = d_{\mu_X}(x_0) - 1 \quad \text{a.e. starting point } x.$$

Remark. Theorems A and B hold for a more general class of flows, defined axiomatically.

Definitions

Recall:

• the local dimension of a μ at $x \in M$ is

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}$$

In this case $\mu(B_r(x)) \sim r^{d_\mu(x)}$.

Definitions

Recall:

• the local dimension of a μ at $x \in M$ is

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}$$

In this case $\mu(B_r(x)) \sim r^{d_\mu(x)}$.

• the hitting time $\tau_r(x, x_0)$ is the time needed for the orbit of a point x to enter for the first time in a ball $B_r(x_0)$ centered at x_0 , with small radius r.

• Motivation: Lorenz flow (First lecture)

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)
- The Wasserstein-Kantorovich distance and properties

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- Local dimension of a measure μ

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- Local dimension of a measure μ
- Hitting and recurrence time

- Motivation: Lorenz flow (First lecture)
- Geometric Lorenz flows(First lecture)
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow (Second Lecture)
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- Local dimension of a measure μ
- Hitting and recurrence time
- Proof of Theorems A and B.

• The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow

• The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow

Method for a geometrical Lorenz flow:

• The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow

Method for a geometrical Lorenz flow:

• *f* has μ_f which induces μ_F for *F* which, on its turn, induces μ_X for the flow.

- Λ is a singular-attractor for a flow if
- (a) all singularities in Λ are hyperbolic
- (b) Λ is partially hyperbolic, E^{cu} volume expanding.

Λ is a singular-attractor for a flow if
(a) all singularities in Λ are hyperbolic
(b) Λ is partially hyperbolic, E^{cu} volume expanding.
Method for a singular-hyperbolic flow:

- $\bullet \Lambda$ is a singular-attractor for a flow if
- (a) all singularities in Λ are hyperbolic
- (b) Λ is partially hyperbolic, E^{cu} volume expanding. Method for a singular-hyperbolic flow:
- cover the domain of the flow by a finite number of adapted cross-sections $\cup_{0 \le i \le n} \Sigma_i$

- $\bullet \Lambda$ is a singular-attractor for a flow if
- (a) all singularities in Λ are hyperbolic
- (b) Λ is partially hyperbolic, E^{cu} volume expanding. Method for a singular-hyperbolic flow:
- cover the domain of the flow by a finite number of adapted cross-sections $\cup_{0 \le i \le n} \Sigma_i$
- the return map $R: \bigcup_{0 \le i \le n} \Sigma_i \to \bigcup_{0 \le i \le n} \Sigma_i$, preserves \mathcal{F}^s and for big enoug return time is hyperbolic.

- $\bullet \Lambda$ is a singular-attractor for a flow if
- (a) all singularities in Λ are hyperbolic
- (b) Λ is partially hyperbolic, E^{cu} volume expanding. Method for a singular-hyperbolic flow:
- cover the domain of the flow by a finite number of adapted cross-sections $\cup_{0 \le i \le n} \Sigma_i$
- the return map $R: \bigcup_{0 \le i \le n} \Sigma_i \to \bigcup_{0 \le i \le n} \Sigma_i$, preserves \mathcal{F}^s and for big enoug return time is hyperbolic.
- family μ_{γ} , $\gamma \in \mathcal{F}^s$ induces μ_F which in its turn induces μ_X

- $\bullet \Lambda$ is a singular-attractor for a flow if
- (a) all singularities in Λ are hyperbolic
- (b) Λ is partially hyperbolic, E^{cu} volume expanding. Method for a singular-hyperbolic flow:
- cover the domain of the flow by a finite number of adapted cross-sections $\cup_{0 \le i \le n} \Sigma_i$
- the return map $R: \bigcup_{0 \le i \le n} \Sigma_i \to \bigcup_{0 \le i \le n} \Sigma_i$, preserves \mathcal{F}^s and for big enoug return time is hyperbolic.
- family μ_{γ} , $\gamma \in \mathcal{F}^s$ induces μ_F which in its turn induces μ_X
- $\exists f: I \rightarrow I$ s. t. $|f|^{-1}$ is α -BV and so it has statistical properties.

• f is generalized bounded variation $\sim \alpha$ -BV if

$$\sup_{a=a_0 < a_1 < \dots < a_n = b} \left(\sum_{j=1}^n |f(a_i) - f(a_{i-1})|^{1/\alpha} \right)^{\alpha} < \infty,$$

the supremum is taken over all finite partition of I = [a, b].

• f is generalized bounded variation $\sim \alpha$ -BV if

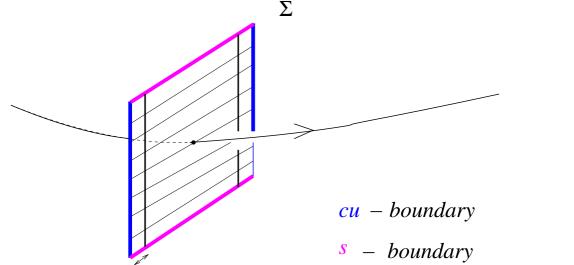
$$\sup_{a=a_0 < a_1 < \dots < a_n = b} \left(\sum_{j=1}^n |f(a_i) - f(a_{i-1})|^{1/\alpha} \right)^\alpha < \infty,$$

the supremum is taken over all finite partition of I = [a, b]. A cross-section Σ is δ -adapted if \exists a $\delta > 0$ -neighborhood \mathcal{N} of $\partial \Sigma^{cu}$ s.t. $\mathcal{N} \cap \Lambda = \emptyset$

• f is generalized bounded variation $\sim \alpha$ -BV if

$$\sup_{a=a_0 < a_1 < \dots < a_n = b} \left(\sum_{j=1}^n |f(a_i) - f(a_{i-1})|^{1/\alpha} \right)^\alpha < \infty,$$

the supremum is taken over all finite partition of I = [a, b]. A cross-section Σ is δ -adapted if \exists a $\delta > 0$ -neighborhood \mathcal{N} of $\partial \Sigma^{cu}$ s.t. $\mathcal{N} \cap \Lambda = \emptyset$



Now we start

Third lecture :

Wasserstein-Kantorovich distance and properties

Wasserstein-Kantorovich distance

Given two probabilities on M, μ_1 and μ_2 , the Wasserstein-Kantorovich distance is defined by

$$W_1(\mu_1, \mu_2) = \sup_{g \in Lip_1(M)} \left(\left| \int_M g d\mu_1 - \int_M g d\mu_2 \right| \right)$$

 $Lip_1(M)$: the space of 1-Lipschitz maps on M.

W-K distance versus coupling

It is worth to remark the connection between the W-K distance, the notion of coupling and the optimal transport problems.

W-K distance versus coupling

It is worth to remark the connection between the W-K distance, the notion of coupling and the optimal transport problems.

Suppose μ_1 and μ_2 are two probability measures on [0, 1]. Let $\mathcal{P}(\mu_1, \mu_2)$ be the space of all Borel probability measures P on $[0, 1] \times [0, 1]$ having marginals μ_1 and μ_2 , i.e. $\mu_1(*) = P(* \times [0, 1])$ and $\mu_2(*) = P([0, 1] \times *)$.

The Kantorovich functional

Consider the (Kantorovich) functional:

$$\mathcal{A}(\mu_1, \mu_2) = \inf_{P \in \mathcal{P}} \int |x - y| dP(x, y)$$

The Kantorovich functional

Consider the (Kantorovich) functional:

$$\mathcal{A}(\mu_1, \mu_2) = \inf_{P \in \mathcal{P}} \int |x - y| dP(x, y)$$

This functional can be interpreted as the minimal cost needed to transport an initial mass distribution μ_1 to a final distribution μ_2 over all the possible transportation plans, represented by the elements of $\mathcal{P}(\mu_1, \mu_2)$ where the cost to transport mass from the position x to the position y is given by |x - y|.

W-K distance versus K-functional

A classical result by Kantorovich and Rubinstein implies that in our case (where the space we consider is [0,1] with the distance d(x,y)=|x-y|)

W-K distance versus K-functional

A classical result by Kantorovich and Rubinstein implies that in our case (where the space we consider is [0,1] with the distance d(x,y)=|x-y|)

$$\mathcal{A}(\mu_1,\mu_2)=W_1(\mu_1,\mu_2).$$

Decay versus W-K distance

Proposition 1. (decay in function of distance) Let $\mu_1 \ll \mu$ and $d\mu_1 = f(x)d\mu$. Then, for $g \in Lip_1(M)$ we have

$$\left| \int g(F^{n}(x)) \cdot f(x) d\mu - \int f(x) d\mu \cdot \int g(x) d\mu \right| \leq L(g) \cdot \|f\|_{1} \cdot W_{1}((F^{*})^{n}(\mu_{1}), \mu).$$

W-K distance versus decay

Proposition 2. (distance in function of decay) Assume that for each $f \in L^1(\mu)$ and $g \in Lip_1(M)$ it holds:

$$\left| \int g(F^{n}(x)) \cdot f(x) d\mu - \int f(x) d\mu \cdot \int g(x) d\mu \right| \leq C \cdot \|g\|_{Lip_{1}(M)} \cdot \|f\|_{L^{1}(\mu)} \cdot \Phi(n).$$

Then, taking $d\mu_1 = f(x)d\mu$ with $\int f(x)d\mu = 1$ we get $W_1((F^*)^n(\mu_1), \mu) \le 2 \cdot C \cdot \Phi(n)$

Proposition 3. Let μ^1 and μ^2 be invariant measures for (F, Σ) satisfying

•
$$\mu^1(A) = \int \mu^1_{\gamma}(A \cap \gamma) d\mu^1_{\gamma}$$
,

Proposition 3. Let μ^1 and μ^2 be invariant measures for (F, Σ) satisfying

- $\mu^1(A) = \int \mu^1_{\gamma}(A \cap \gamma) d\mu^1_{\gamma}$,
- $\mu^2(A) = \int \mu_{\gamma}^2(A \cap \gamma) d\mu_{\gamma}^2$;

 μ_{γ}^{i} : has bounded variation density. Moreover, assume

Proposition 3. Let μ^1 and μ^2 be invariant measures for (F, Σ) satisfying

- $\mu^1(A) = \int \mu^1_{\gamma}(A \cap \gamma) d\mu^1_{\gamma}$,
- $\mu^2(A) = \int \mu_{\gamma}^2(A \cap \gamma) d\mu_{\gamma}^2$;

 μ_{γ}^{i} : has bounded variation density. Moreover, assume

(1) for each $\gamma \in \mathcal{F}^s$, $W_1(\mu_{\gamma}^1, \mu_{\gamma}^2) \leq \epsilon$,

Proposition 3. Let μ^1 and μ^2 be invariant measures for (F, Σ) satisfying

• $\mu^1(A) = \int \mu^1_{\gamma}(A \cap \gamma) d\mu^1_{\gamma}$,

•
$$\mu^2(A) = \int \mu_{\gamma}^2(A \cap \gamma) d\mu_{\gamma}^2$$
;

 μ_{γ}^{i} : has bounded variation density. Moreover, assume

(1) for each $\gamma \in \mathcal{F}^s$, $W_1(\mu_\gamma^1, \mu_\gamma^2) \leq \epsilon$,

(2)
$$\sup_{\|g\|_{\infty}} \left| \int g d\mu_{\gamma}^1 - \int g d\mu_{\gamma}^2 \right| \leq \delta.$$

Proposition 3. Let μ^1 and μ^2 be invariant measures for (F, Σ) satisfying

• $\mu^1(A) = \int \mu^1_{\gamma}(A \cap \gamma) d\mu^1_{\gamma}$,

•
$$\mu^2(A) = \int \mu_{\gamma}^2(A \cap \gamma) d\mu_{\gamma}^2$$
;

 μ_{γ}^{i} : has bounded variation density. Moreover, assume

(1) for each $\gamma \in \mathcal{F}^s$, $W_1(\mu_\gamma^1, \mu_\gamma^2) \leq \epsilon$,

(2)
$$\sup_{\|g\|_{\infty}} \left| \int g d\mu_{\gamma}^1 - \int g d\mu_{\gamma}^2 \right| \le \delta.$$

Then $W_1(\mu^1, \mu^2) \le \epsilon + \delta.$

W-K distance versus stable foliation

Property (******) Let $\gamma \in \mathcal{F}^s$, and two probability measures μ , ν on it. Then

 $W_1(F^*(\mu), F^*(\nu)) \le \lambda W_1(\mu, \nu) \quad (\star\star).$

W-K distance versus stable foliation

Property (******) Let $\gamma \in \mathcal{F}^s$, and two probability measures μ , ν on it. Then

 $W_1(F^*(\mu), F^*(\nu)) \le \lambda W_1(\mu, \nu) \quad (\star\star).$

Proof As *F* uniformly contracts each leaf we get that if *g* is 1-Lipschitz on $F(\gamma)$ then g(F(*)) is λ -Lipschitz on γ . This implies that

$$\left|\int_{F(\gamma)} g \ d(F^*\mu) - \int_{F(\gamma)} g \ d(F^*\nu)\right| = \left|\int_{\gamma} g \circ F \ d\mu - \int_{\gamma} g \circ F \ d\nu\right|$$
$$\leq \lambda \cdot W_1(\mu, \nu)$$

finishing the proof.

Fastly decay for *F*

Let $\mu^1 \ll \mu$, μ the SBR measure such that $d\mu_1 = f(x)d\mu$. Then, for each Borel set *A* we have

$$\mu_1(A) = \int_I \int_{A \cap \gamma} f(x) d\mu_{\gamma} d\mu_y.$$

Fastly decay for *F*

Let $\mu^1 \ll \mu$, μ the SBR measure such that $d\mu_1 = f(x)d\mu$. Then, for each Borel set *A* we have

$$\mu_1(A) = \int_I \int_{A \cap \gamma} f(x) d\mu_{\gamma} d\mu_y.$$

Thus we are in the setting of Proposition 3 above, in another words, the SBR measure for *F* disintegrates.

(Σ, F, μ) is fastly mixing

Theorem . The geometric Lorenz system (Σ, F, μ) is fastly mixing for Lipshitz and L^1 observables.

(Σ, F, μ) is fastly mixing

Theorem . The geometric Lorenz system (Σ, F, μ) is fastly mixing for Lipshitz and L^1 observables.

To prove this theorem we shall use that

(*) μ is regular enough that for each ℓ -Lipschitz function $f: \Sigma \to \mathbb{R}$ the projection $\pi_x^*(f\mu)$ has bounded variation density \overline{f} (which can also be expressed as $\overline{f}(x) = \int f(x, y) \ d\mu|_{\gamma_x}$), with

$$var(\overline{f}) \le K\ell$$

where K does not depend on f.

Strategy

Consider $\mu_1 = h\mu$ with h Lipschitz and

$$\int hd\mu = 1, \qquad d\mu_1 = f(x)d\mu$$

Strategy

Consider $\mu_1 = h\mu$ with h Lipschitz and

$$\int hd\mu = 1, \qquad d\mu_1 = f(x)d\mu$$

The strategy is to use Proposition 3 and find exponentially decreasing bounds for ϵ and δ so that we can estimate the W-K distance between μ and $hd\mu$,

Strategy

Consider $\mu_1 = h\mu$ with h Lipschitz and

$$\int hd\mu = 1, \qquad d\mu_1 = f(x)d\mu$$

The strategy is to use Proposition 3 and find exponentially decreasing bounds for ϵ and δ so that we can estimate the W-K distance between μ and $hd\mu$,

and then apply Proposition 2 to deduce exponentially decay of correlations.

Let $\gamma_x \in \mathcal{F}^s$ with coordinate x. The density \overline{f} , by (*) is BV and $\|\overline{f}\|_{BV} \leq K\ell + 1 \leq (K+1)\ell$.

Let $\gamma_x \in \mathcal{F}^s$ with coordinate x. The density \overline{f} , by (*) is BV and $\|\overline{f}\|_{BV} \leq K\ell + 1 \leq (K+1)\ell$. Let $\nu_x = \overline{f}m$ be the measure on the x-axis with density \overline{f} (m: the Lebesgue measure). Let $T = f_{Lo}$ and $g \in L^1([-\frac{1}{2}, \frac{1}{2}])$.

Let $\gamma_x \in \mathcal{F}^s$ with coordinate x. The density \overline{f} , by (*) is BV and $\|\overline{f}\|_{BV} \leq K\ell + 1 \leq (K+1)\ell$.

Let $\nu_x = \overline{f}m$ be the measure on the *x*-axis with density \overline{f} (*m*: the Lebesgue measure). Let $T = f_{Lo}$ and $g \in L^1([-\frac{1}{2}, \frac{1}{2}])$. Since

 $|\int g \ d(T^{*n}(\nu_x)) - \int g \ d\mu_x| = |\int g(T^n(x))\overline{f}(x)dm - \int g(x)d\mu_x|,$ the fact that *T* has exponential decay implies

$$\left|\int gd(T^{*n}(\nu_x)) - \int gd\mu_x\right| \le \|g\|_{L_1} \cdot \|\overline{f}\|_{BV} \cdot C \cdot e^{-\lambda n}.$$

Let $\gamma_x \in \mathcal{F}^s$ with coordinate x. The density \overline{f} , by (*) is BV and $\|\overline{f}\|_{BV} \leq K\ell + 1 \leq (K+1)\ell$.

Let $\nu_x = \overline{f}m$ be the measure on the *x*-axis with density \overline{f} (*m*: the Lebesgue measure). Let $T = f_{Lo}$ and $g \in L^1([-\frac{1}{2}, \frac{1}{2}])$. Since

 $|\int g \ d(T^{*n}(\nu_x)) - \int g \ d\mu_x| = |\int g(T^n(x))\overline{f}(x)dm - \int g(x)d\mu_x|,$ the fact that *T* has exponential decay implies

$$\left|\int gd(T^{*n}(\nu_x)) - \int gd\mu_x\right| \le \|g\|_{L_1} \cdot \|\overline{f}\|_{BV} \cdot C \cdot e^{-\lambda n}.$$

Thus

$$\sup_{\|g\|_{\infty} \le 1} |\int g dT^{*n}(\nu_x) - \int g d\mu_x| \le \|\overline{f}\|_{BV} \cdot C \cdot e^{-\lambda n} \le (K+1) \cdot \ell \cdot C \cdot e^{-\lambda n}.$$

Thus

$$\sup_{\|g\|_{\infty} \le 1} |\int g dT^{*n}(\nu_x) - \int g d\mu_x| \le \|\overline{f}\|_{BV} \cdot C \cdot e^{-\lambda n} \le$$

$$(K+1) \cdot \ell \cdot C \cdot e^{-\lambda n}.$$

so item (2) at Proposition 3 is satisfied with exponential bound depending on the Lipschitz constant ℓ of f.

Let $\nu^n = F^{*n}\nu$ as before. Since *F* sends vertical leaves into vertical ones then there is a family of probability measures ν_{γ}^n on vertical leaves such that

$$(F^{*n}\nu)(g) = \int_{\gamma \in I} \int_{\gamma} g(*) d\nu_{\gamma}^n d((T^{*n}(\nu_x))).$$

Let $\nu^n = F^{*n}\nu$ as before. Since *F* sends vertical leaves into vertical ones then there is a family of probability measures ν_{γ}^n on vertical leaves such that

$$(F^{*n}\nu)(g) = \int_{\gamma \in I} \int_{\gamma} g(*) d\nu_{\gamma}^n d((T^{*n}(\nu_x))).$$

To satisfy item (1) at Proposition 3 and hence conclude the statement we only have to prove that there are C_2 , λ_2 s.t.

$$\forall \gamma \in \mathcal{F}^s, \quad W_1(\nu_{\gamma}^n, \mu_{\gamma}) \le C_2 \cdot e^{-\lambda_2 n}$$

Proof. Indeed, by $(\star\star)$, if ν_{γ} and ρ_{γ} are the two probabilities on the leaf γ then the measures $F^*(\nu_{\gamma}), F^*(\rho_{\gamma})$ on the contracting leaf $F(\gamma)$ are such that

Proof. Indeed, by $(\star\star)$, if ν_{γ} and ρ_{γ} are the two probabilities on the leaf γ then the measures $F^*(\nu_{\gamma}), F^*(\rho_{\gamma})$ on the contracting leaf $F(\gamma)$ are such that

 $W_1(F^*(\nu_{\gamma}), F^*(\rho_{\gamma})) \le \lambda \cdot W_1(\nu_{\gamma}, \rho_{\gamma}).$

Proof. Indeed, by $(\star\star)$, if ν_{γ} and ρ_{γ} are the two probabilities on the leaf γ then the measures $F^*(\nu_{\gamma}), F^*(\rho_{\gamma})$ on the contracting leaf $F(\gamma)$ are such that

$W_1(F^*(\nu_{\gamma}), F^*(\rho_{\gamma})) \le \lambda \cdot W_1(\nu_{\gamma}, \rho_{\gamma}).$

Now let $F^{-1}(\gamma) = \gamma_1 \cup \gamma_2$ and apply the above inequality to estimate the W-K distance of iterates of the measure on the leaves.

After one iteration of F^* on ν and μ the "new" measures $\nu_{\gamma}^1 = (F^*(\nu))_{\gamma}$ and μ_{γ} (which is equal to $(F^*(\mu))_{\gamma}$ because μ is invariant) on the leaf γ will be a convex combination of the images of the "old" measures on γ_1 and γ_2

$$\nu_{\gamma}^1 = a \cdot F^*(\nu_{\gamma_1}) + b \cdot F^*(\nu_{\gamma_2}),$$

$$\mu_{\gamma} = a \cdot F^*(\mu_{\gamma_1}) + b \cdot F^*(\mu_{\gamma_2})$$

with $a + b = 1, a, b \ge 0$ (the second equality is again because μ is invariant).

By the triangle inequality and the property of W-K distance with convex combinations, we have:

 $W_1(\nu_{\gamma}^1, \mu_{\gamma}) \le a \cdot W_1(F^*(\nu_{\gamma_1}), F^*(\mu_{\gamma_1})) + b \cdot W_1(F^*(\nu_{\gamma_2}), F^*(\mu_{\gamma_2}))$

By the triangle inequality and the property of W-K distance with convex combinations, we have:

 $W_1(\nu_{\gamma}^1, \mu_{\gamma}) \leq a \cdot W_1(F^*(\nu_{\gamma_1}), F^*(\mu_{\gamma_1})) + b \cdot W_1(F^*(\nu_{\gamma_2}), F^*(\mu_{\gamma_2}))$ and by (*) (density is BV) $W_1(\nu_{\gamma}^1, \mu_{\gamma}) \leq \lambda(a \cdot W_1(\nu_{\gamma_1}, \mu_{\gamma_1}) + b \cdot W_1(\nu_{\gamma_2}, \mu_{\gamma_2}))$

Thus,

 $W_1(\nu_{\gamma}^1, \mu_{\gamma}) \leq \lambda \cdot \sup_{\gamma} (W_1(\nu_{\gamma}, \mu_{\gamma})).$

Thus,

$$W_1(\nu_{\gamma}^1, \mu_{\gamma}) \leq \lambda \cdot \sup_{\gamma} (W_1(\nu_{\gamma}, \mu_{\gamma})).$$

The same can be done in the case when the pre-image $F^{-1}(\gamma) = \gamma_1$ is only one leaf or two, hence by induction

$$W_1(\nu_{\gamma}^n, \mu_{\gamma}) < \lambda^n,$$

and the exponential bound on the distance of iterates on the leaves (item 1 of Proposition 3) is provided.

Thus,

$$W_1(\nu_{\gamma}^1, \mu_{\gamma}) \leq \lambda \cdot \sup_{\gamma} (W_1(\nu_{\gamma}, \mu_{\gamma})).$$

The same can be done in the case when the pre-image $F^{-1}(\gamma) = \gamma_1$ is only one leaf or two, hence by induction

$$W_1(\nu_{\gamma}^n,\mu_{\gamma}) < \lambda^n,$$

and the exponential bound on the distance of iterates on the leaves (item 1 of Proposition 3) is provided. This finishes the proof that (Σ, F, μ_F) is fastly mixing.

Finally

This finishes the third lecture.

We shall continue tomorrow, at 9 AM.