Lorenz like flows-Second Lecture

Maria José Pacifico

pacifico@im.ufrj.br

IM-UFRJ Rio de Janeiro - Brasil

Lorenz like flows-Second Lecture - p. 1

Main goals

The main goal is to explain the results (Galatolo-P) Theorem A. (decay of correlation for the Poincaré map) Let F be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of F has exponential decay of correlation with respect to Lipschitz observables.

Main goals

The main goal is to explain the results (Galatolo-P) **Theorem A.** (decay of correlation for the Poincaré map) Let *F* be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of *F* has exponential decay of correlation with respect to Lipschitz observables.

Theorem B. (logarithm law for the hitting time) For each regular x_0 s.t. the local dimension $d_{\mu_X}(x_0)$ is defined it holds

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = d_{\mu_X}(x_0) - 1 \quad \text{a.e. starting point } x.$$

Main goals

The main goal is to explain the results (Galatolo-P) **Theorem A.** (decay of correlation for the Poincaré map) Let *F* be the first return map associated to a geometrical Lorenz flow. The unique SRB measure μ_F of *F* has exponential decay of correlation with respect to Lipschitz observables.

Theorem B. (logarithm law for the hitting time) For each regular x_0 s.t. the local dimension $d_{\mu_X}(x_0)$ is defined it holds

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = d_{\mu_X}(x_0) - 1 \quad \text{a.e. starting point } x.$$

Remark. Theorems A and B hold for a more general class of flows, defined axiomatically.

Definitions

Recall:

• the local dimension of a μ at $x \in M$ is

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}$$

In this case $\mu(B_r(x)) \sim r^{d_{\mu}(x)}$.

Definitions

Recall:

• the local dimension of a μ at $x \in M$ is

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}$$

In this case $\mu(B_r(x)) \sim r^{d_\mu(x)}$.

• the hitting time $\tau_r(x, x_0)$ is the time needed for the orbit of a point x to enter for the first time in a ball $B_r(x_0)$ centered at x_0 , with small radius r.

Motivation

- Motivation
- Geometric Lorenz flows

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.
- The Wasserstein-Kantorovich distance and properties

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- \bullet Local dimension of a measure μ

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- \bullet Local dimension of a measure μ
- Hitting and recurrence time

- Motivation
- Geometric Lorenz flows
- The first return map F has a SRB measure μ_F that induces a SRB measure μ_X for the the flow.
- The Wasserstein-Kantorovich distance and properties
- F has exponential decay of correlations respect to μ_F
- \bullet Local dimension of a measure μ
- Hitting and recurrence time
- Proof of Theorems A and B.

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

• Motivation : Lorenz' equations

$$X(x, y, z) = \begin{cases} \dot{x} = -10 \cdot x + 10 \cdot y \\ \dot{y} = 28 \cdot x - y - x \cdot z \\ \dot{z} = -\frac{8}{3} \cdot z + x \cdot y. \end{cases}$$

• Construction of a Lorenz geom. flow and we described its main properties.

• The Poincaré map *F* has the form

$$F(x, y) = (f(x), g(x, y))$$

Now we start

Second lecture :

F and the flow *X* have SRB measure μ_F and μ_X

Physical measures

An invariant probability μ is *physical* for the flow X_t , $t \in \mathbb{R}$ if the set $B(\mu)$ of points $z \in M$ satisfying

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T \varphi (X_t(z)) \, dt = \int \varphi \, d\mu$$

for all continuous $\varphi: M \to I\!\!R$ has positive Lebesgue measure.

 $B(\mu)$: the *basin* of μ .

Piecewise expanding maps admits a unique invariant probability measure μ_f which is absolutely continuous with respect to Lebesgue measure m.

Piecewise expanding maps admits a unique invariant probability measure μ_f which is absolutely continuous with respect to Lebesgue measure m.

From μ_f we may construct a SRB measure μ_F , for the first return map *F* through the following general procedure.

Since μ_f is defined on the interval *I* which can be identified to the space of leaves of the contracting foliation \mathcal{F}^s ,

Since μ_f is defined on the interval *I* which can be identified to the space of leaves of the contracting foliation \mathcal{F}^s ,

we may also think of it as a measure on the σ -algebra of Borel subsets of Σ which are union of entire leaves of \mathcal{F}^s .

Using the fact that F is uniformly contracting on leaves of \mathcal{F}^s we conclude that the sequence

 $F^{*n}(\mu_f), \quad n \ge 1,$

of push-forward of μ_f under *F* is weak*-Cauchy:

Using the fact that *F* is uniformly contracting on leaves of \mathcal{F}^s we conclude that the sequence

$$F^{*n}(\mu_f), \quad n \ge 1,$$

of push-forward of μ_f under *F* is weak*-Cauchy: given any continuous $\psi : \Sigma \to \mathbb{R}$

$$\int \psi d(F^{n*}\mu_f) = \int (\psi \circ F^n) d\mu_f, \quad n \ge 1,$$

is a Cauchy sequence in \mathbb{R} .

Define μ_F to be the weak*-limit of the above sequence, that is,

$$\int \psi d\mu_F = \lim \int \psi d(F^{*n}\mu)$$

for each continuous ψ .

Define μ_F to be the weak*-limit of the above sequence, that is,

$$\int \psi d\mu_F = \lim \int \psi d(F^{*n}\mu)$$

for each continuous ψ .

Then μ_F is invariant under *F*, and it is an ergodic physical measure for *F*.

Define μ_F to be the weak*-limit of the above sequence, that is,

$$\int \psi d\mu_F = \lim \int \psi d(F^{*n}\mu)$$

for each continuous ψ .

Then μ_F is invariant under *F*, and it is an ergodic physical measure for *F*.

The last statement follows from the fact that μ_f is an ergodic physical measure for f, together with the fact that asymptotic time-averages of continuous functions $\psi: \Sigma \to \mathbb{R}$ are constant on the leaves of \mathcal{F}^s .

Given any point x whose orbit sooner or later will cross Σ we denote with t(x) the first strictly positive time such that $X^{t(x)}(x) \in \Sigma$ (the *return time* of x to Σ). Denote by Σ^* the (full measure) subset of Σ where t is defined.

Given any point x whose orbit sooner or later will cross Σ we denote with t(x) the first strictly positive time such that $X^{t(x)}(x) \in \Sigma$ (the *return time* of x to Σ). Denote by Σ^* the (full measure) subset of Σ where t is defined.

Now we show how to construct an physical invariant measure for the flow, *when the return time is integrable*:

Given any point x whose orbit sooner or later will cross Σ we denote with t(x) the first strictly positive time such that $X^{t(x)}(x) \in \Sigma$ (the *return time* of x to Σ). Denote by Σ^* the (full measure) subset of Σ where t is defined.

Now we show how to construct an physical invariant measure for the flow, *when the return time is integrable*:

$$\int_{\Sigma^*} t d\mu_F < \infty.$$
SRB meas. for Lorenz geo. flow-5

Denote by ~ the equivalence relation on $\Sigma \times \mathbb{R}$ given by $(w, t(w)) \sim (F(w), 0)$.

Let $N = (\Sigma^* \times \mathbb{R}) / \sim$ and $\nu = \pi_*(\mu_F \times dt)$, where $\pi : \Sigma^* \times \mathbb{R} \to N$ is the quotient map and dt is a Lebesgue measure in \mathbb{R} . We have that ν is a finite measure. Let $\phi : N \to \mathbb{R}^3$ be defined by $\phi(w, t) = X^t(w)$ and $\mu_X = \phi_* \nu$.

SRB meas. for Lorenz geo. flow-5

Denote by ~ the equivalence relation on $\Sigma \times \mathbb{R}$ given by $(w, t(w)) \sim (F(w), 0)$.

Let $N = (\Sigma^* \times \mathbb{R}) / \sim$ and $\nu = \pi_*(\mu_F \times dt)$, where $\pi : \Sigma^* \times \mathbb{R} \to N$ is the quotient map and dt is a Lebesgue measure in \mathbb{R} . We have that ν is a finite measure. Let $\phi : N \to \mathbb{R}^3$ be defined by $\phi(w, t) = X^t(w)$ and $\mu_X = \phi_* \nu$. The measure μ_X is a physical for the flow X^t :

$$\frac{1}{T} \int_0^T \psi(X^t(w)) dt \to \int \psi d\mu_X \quad \text{as} \quad T \to \infty$$

for every continuous function $\psi : \mathbb{R}^3 \to \mathbb{R}$, and Lebesgue almost every point $w \in \phi(N)$.

SRB for Lorenz geo. flow-6

The Geometric Lorenz flow has integrable return time, hence the above construction for the invariant measure can be applied to it. In fact, there are K, C > 0 such that

$$-K^{-1} \cdot \log(d(x,\Gamma)) - C \le t(x) \le -K \cdot \log(d(x,\Gamma)) + C.$$

SRB for Lorenz geo. flow-6

The Geometric Lorenz flow has integrable return time, hence the above construction for the invariant measure can be applied to it. In fact, there are K, C > 0 such that

$$-K^{-1} \cdot \log(d(x,\Gamma)) - C \le t(x) \le -K \cdot \log(d(x,\Gamma)) + C.$$

Combining this with the definition of μ_F and that $d\mu_{f_{Lo}}/dm$ is a bounded function, we conclude that

SRB for Lorenz geo. flow-6

The Geometric Lorenz flow has integrable return time, hence the above construction for the invariant measure can be applied to it. In fact, there are K, C > 0 such that

$$-K^{-1} \cdot \log(d(x,\Gamma)) - C \le t(x) \le -K \cdot \log(d(x,\Gamma)) + C.$$

Combining this with the definition of μ_F and that $d\mu_{f_{Lo}}/dm$ is a bounded function, we conclude that

Proposition The return time is integrable

$$t_0 = \int t d\mu_F < \infty.$$

Existence of a SRB measure

Thus we have:

TheoremThe Lorenz geometric flow admits a SRB measure μ_X . Moreover, it can be verified that the support of μ_X is the whole attractor $\Lambda = \bigcap_{t \ge 0} X^t(U)$. By construction μ_X admits a disintegration into a.c. conditional measures μ_γ along $\gamma \in \mathcal{F}^{cu}$ such that $\frac{d\mu_\gamma}{dm_\gamma}$ is

uniformly bounded from above.

Existence of a SRB measure

Thus we have:

TheoremThe Lorenz geometric flow admits a SRB measure μ_X . Moreover, it can be verified that the support of μ_X is the whole attractor $\Lambda = \bigcap_{t \ge 0} X^t(U)$. By construction μ_X admits a disintegration into a.c. conditional measures μ_γ along $\gamma \in \mathcal{F}^{cu}$ such that $\frac{d\mu_\gamma}{dm_\gamma}$ is

uniformly bounded from above.

Existence of a SRB measure

Thus we have:

TheoremThe Lorenz geometric flow admits a SRB measure μ_X . Moreover, it can be verified that the support of μ_X is the whole attractor $\Lambda = \bigcap_{t \ge 0} X^t(U)$. By construction μ_X admits a disintegration into a.c. conditional measures μ_γ along $\gamma \in \mathcal{F}^{cu}$ such that $\frac{d\mu_\gamma}{dm_\gamma}$ is uniformly bounded from above.

Local dimension for μ

 $B_r(x)$: ball with radius r at $x \in \Lambda$. $d_\mu(x)$: local dimension of μ at x.

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}.$$

Local dimension for μ

 $B_r(x)$: ball with radius *r* at *x* ∈ Λ. $d_\mu(x)$: local dimension of *μ* at *x*.

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r}.$$

This notion was introduced by L-S Young (1982) and characterizes the local geometric structure of an invariant measure with respect to the metric in the phase space of the system.

Fix $x_0 \in M$ and let $B_r(x_0)$: ball with radius r at $x_0 \in \Lambda$.

Fix $x_0 \in M$ and let $B_r(x_0)$: ball with radius r at $x_0 \in \Lambda$.

The hitting time $\tau_r(x, x_0)$ is the time needed to the orbit of x, $\mathcal{O}(x)$, to enter for the first time in $B_r(x_0)$.

Fix $x_0 \in M$ and let $B_r(x_0)$: ball with radius r at $x_0 \in \Lambda$.

The hitting time $\tau_r(x, x_0)$ is the time needed to the orbit of x, $\mathcal{O}(x)$, to enter for the first time in $B_r(x_0)$.

Theorem. (Galatolo-Pacifico) For μ -almost every x,

$$\lim_{\mathbf{r}\to\mathbf{0}}\frac{\log\tau_{\mathbf{r}}(\mathbf{x},\mathbf{x}_{\mathbf{0}})}{-\log\mathbf{r}}=\mathbf{d}_{\mu}(\mathbf{x}_{\mathbf{0}})-\mathbf{1}.$$

Fix $x_0 \in M$ and let $B_r(x_0)$: ball with radius r at $x_0 \in \Lambda$.

The hitting time $\tau_r(x, x_0)$ is the time needed to the orbit of x, $\mathcal{O}(x)$, to enter for the first time in $B_r(x_0)$.

Theorem. (Galatolo-Pacifico) For μ -almost every x,

$$\lim_{\mathbf{r}\to\mathbf{0}}\frac{\log\tau_{\mathbf{r}}(\mathbf{x},\mathbf{x}_{\mathbf{0}})}{-\log\mathbf{r}}=\mathbf{d}_{\mu}(\mathbf{x}_{\mathbf{0}})-\mathbf{1}.$$

Observe that the result above indicates once more the chaoticity of a Lorenz-like attractor: it shows that asymptotically, such attractors behave as an iid system.

 $F: \Sigma \to \Sigma$: the first return map to Σ , a cross section to X^t .

 $F: \Sigma \to \Sigma$: the first return map to Σ , a cross section to X^t .

1. Theorem. Let μ_F an invariant SRB measure for F. Then the system (Σ, F, μ_F) is fastly mixing (exponentially).

 $F: \Sigma \to \Sigma$: the first return map to Σ , a cross section to X^t .

- 1. Theorem. Let μ_F an invariant SRB measure for F. Then the system (Σ, F, μ_F) is fastly mixing (exponentially).
- 2. Theorem. μ_F is exact, that is, $d_{\mu_F}(x)$ exist almost every $x \in \Sigma$.

 $F: \Sigma \to \Sigma$: the first return map to Σ , a cross section to X^t .

- 1. Theorem. Let μ_F an invariant SRB measure for *F*. Then the system (Σ, F, μ_F) is fastly mixing (exponentially).
- 2. Theorem. μ_F is exact, that is, $d_{\mu_F}(x)$ exist almost every $x \in \Sigma$.
- 3. Let $x_0 \in \Sigma$ and $\tau_{r,\Sigma}(x, x_0)$ be the time needed to \mathcal{O}_x enter for the first time in $B_r(x_0) \cap \Sigma = B_{r,\Sigma}$.

Theorem.

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = \lim_{r \to 0} \frac{\log \tau_{r, \Sigma}(x, x_0)}{-\log r} = d_{\mu_F}(x_0).$$

 $F: \Sigma \to \Sigma$: the first return map to Σ , a cross section to X^t .

- 1. Theorem. Let μ_F an invariant SRB measure for *F*. Then the system (Σ, F, μ_F) is fastly mixing (exponentially).
- 2. Theorem. μ_F is exact, that is, $d_{\mu_F}(x)$ exist almost every $x \in \Sigma$.
- 3. Let $x_0 \in \Sigma$ and $\tau_{r,\Sigma}(x, x_0)$ be the time needed to \mathcal{O}_x enter for the first time in $B_r(x_0) \cap \Sigma = B_{r,\Sigma}$.

Theorem.

$$\lim_{r \to 0} \frac{\log \tau_r(x, x_0)}{-\log r} = \lim_{r \to 0} \frac{\log \tau_{r, \Sigma}(x, x_0)}{-\log r} = d_{\mu_F}(x_0).$$

4. Theorem . $d_{\mu}(x) = d_{\mu_F}(x) + 1$.

Extention: sing-hyp attractors

Next we explain how to proceed in the case of singular-hyperbolic attractors.

Consider a C^1 3-dimensional vector field X whose induced flow X_t admits a compact invariant subset Λ such that

■ $\exists U$ open nbhd. of Λ satisfying $\Lambda = \bigcap_{t>0} X_t(U)$ (that is Λ is an *attracting set*).

Consider a C^1 3-dimensional vector field X whose induced flow X_t admits a compact invariant subset Λ such that

- $\exists U$ open nbhd. of Λ satisfying $\Lambda = \bigcap_{t>0} X_t(U)$ (that is Λ is an *attracting set*).
- $\exists z \in \Lambda \text{ s.t. } X(z) \neq 0 \text{ (i.e. } z \text{ is a regular point for } X \text{) and}$ its orbit $\{X_t(z) : t > 0\}$ is dense in Λ (that is Λ is also an *attractor*).

Consider a C^1 3-dimensional vector field X whose induced flow X_t admits a compact invariant subset Λ such that

- $\exists U$ open nbhd. of Λ satisfying $\Lambda = \bigcap_{t>0} X_t(U)$ (that is Λ is an *attracting set*).
- $\exists z \in \Lambda \text{ s.t. } X(z) \neq 0 \text{ (i.e. } z \text{ is a regular point for } X \text{) and}$ its orbit $\{X_t(z) : t > 0\}$ is dense in Λ (that is Λ is also an *attractor*).

Moreover assume that

• Λ contains some (or several) non-degenerate (persistent) singularity σ of X (i.e. $X(\sigma) = 0$)

that is, Λ is a *singular-attractor:* an attracting set containing a dense orbit and singularities.

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y C^1$ -close to X.

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y \ C^1$ -close to X. If Λ_Y is a *singular-attractor for every* $Y \ C^1$ -close to X (i.e. Λ is a robustly transitive singular-attractor), then by Morales-Pacifico-Pujals (1998)

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y \ C^1$ -close to X. If Λ_Y is a *singular-attractor for every* $Y \ C^1$ -close to X (i.e. Λ is a robustly transitive singular-attractor), then by Morales-Pacifico-Pujals (1998)

• \exists splitting $T_z M = E_z^s \oplus E_z^c$ with $\dim(E_z^s) = 1$ and $\dim(E_z^c) = 2$, and $\lambda \in (0, 1)$ and c > 0 such that for all $x \in \Lambda$ and t > 0 we have

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y \ C^1$ -close to X. If Λ_Y is a *singular-attractor for every* $Y \ C^1$ -close to X (i.e. Λ is a robustly transitive singular-attractor), then by Morales-Pacifico-Pujals (1998)

• \exists splitting $T_z M = E_z^s \oplus E_z^c$ with $\dim(E_z^s) = 1$ and $\dim(E_z^c) = 2$, and $\lambda \in (0, 1)$ and c > 0 such that for all $x \in \Lambda$ and t > 0 we have

— domination: $||DX_t | E_x^s|| ||DX_{-t} | E_{X_t(x)}^c|| < c\lambda^t$

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y \ C^1$ -close to X. If Λ_Y is a *singular-attractor for every* $Y \ C^1$ -close to X (i.e. Λ is a robustly transitive singular-attractor), then by Morales-Pacifico-Pujals (1998)

• \exists splitting $T_z M = E_z^s \oplus E_z^c$ with $\dim(E_z^s) = 1$ and $\dim(E_z^c) = 2$, and $\lambda \in (0, 1)$ and c > 0 such that for all $x \in \Lambda$ and t > 0 we have

- domination: $||DX_t | E_x^s|| ||DX_{-t} | E_{X_t(x)}^c|| < c\lambda^t$

- E^s is uniformly contracted: $||DX_t| | E^s_x || < c \lambda^t$.

Note that $\Lambda_Y = \bigcap_{t>0} Y_t(U)$ is a *singular-attracting set* for every vector field $Y \ C^1$ -close to X. If Λ_Y is a *singular-attractor for every* $Y \ C^1$ -close to X (i.e. Λ is a robustly transitive singular-attractor), then by Morales-Pacifico-Pujals (1998)

• \exists splitting $T_z M = E_z^s \oplus E_z^c$ with $\dim(E_z^s) = 1$ and $\dim(E_z^c) = 2$, and $\lambda \in (0, 1)$ and c > 0 such that for all $x \in \Lambda$ and t > 0 we have

— domination: $||DX_t | E_x^s|| ||DX_{-t} | E_{X_t(x)}^c|| < c\lambda^t$

— E^s is uniformly contracted: $||DX_t| | E^s_x || < c \lambda^t$.

— the volume along E^c sub-bundle is uniformly expanded:

 $\left|\det(DX_t \mid E_x^c)\right| \ge c \, e^{\lambda t}.$

Moreover the *singularities* are all *Lorenz-like*: $DX(\sigma)$ has *three distinct eigenvalues* $\lambda_1, \lambda_2, \lambda_3$ such that

 $\lambda_1 > 0 > \lambda_2 > \lambda_3$ and $\lambda_1 + \lambda_2 > 0$.

Moreover the *singularities* are all *Lorenz-like*: $DX(\sigma)$ has *three distinct eigenvalues* $\lambda_1, \lambda_2, \lambda_3$ such that

 $\lambda_1 > 0 > \lambda_2 > \lambda_3$ and $\lambda_1 + \lambda_2 > 0$.

Motivated by MPP result we indroduced the following notion:

Motivated by MPP result we indroduced the following notion:

An attractor Λ is singular-hyperbolic if

 \bullet all singularities contained in Λ are hyperbolic

Motivated by MPP result we indroduced the following notion:

- \bullet all singularities contained in Λ are hyperbolic
- Λ is partially hyperbolic : $T_{\lambda} = E^s \oplus E^{cu}$,

Motivated by MPP result we indroduced the following notion:

- \bullet all singularities contained in Λ are hyperbolic
- Λ is partially hyperbolic : $T_{\lambda} = E^s \oplus E^{cu}$,
- E^s 1-dimensional and uniformly contracting,

Motivated by MPP result we indroduced the following notion:

- \bullet all singularities contained in Λ are hyperbolic
- Λ is partially hyperbolic : $T_{\lambda} = E^s \oplus E^{cu}$,
- E^s 1-dimensional and uniformly contracting,
- E^{cu} 2-dimensional, contains the direction of the flow, and it is volume expanding.
Existence of a physical measure

Theorem B. Let Λ be a singular-hyperbolic attractor. Then Λ supports a unique physical probability measure μ which is ergodic, hyperbolic and its ergodic basin covers a full Lebesgue measure subset of the topological basin of attraction, i.e. $B(\mu) = W^s(\Lambda)$, $m \mod 0$.

Existence of a physical measure

Theorem B. Let Λ be a singular-hyperbolic attractor. Then Λ supports a unique physical probability measure μ which is ergodic, hyperbolic and its ergodic basin covers a full Lebesgue measure subset of the topological basin of attraction, i.e. $B(\mu) = W^s(\Lambda)$, $m \mod 0$.

The hyperbolicity of μ means that along the E^c direction there exists a positive Lyapunov exponent along a measurable sub-bundle $E^u \subsetneq E^c$ (the exponent along the flow direction is zero and along the E^s direction is negative).

Existence of a physical measure

Theorem B. Let Λ be a singular-hyperbolic attractor. Then Λ supports a unique physical probability measure μ which is ergodic, hyperbolic and its ergodic basin covers a full Lebesgue measure subset of the topological basin of attraction, i.e. $B(\mu) = W^s(\Lambda)$, $m \mod 0$.

The hyperbolicity of μ means that along the E^c direction there exists a positive Lyapunov exponent along a measurable sub-bundle $E^u \subsetneq E^c$ (the exponent along the flow direction is zero and along the E^s direction is negative).

Theorem B is another statement of sensitiveness of the dynamics of X on Λ , since the presence of a positive Lyapunov exponent implies that orbits of infinitesimally close points tend to move apart from each other.

The physical measure is a Gibbs state

We say that μ has an absolutely continuous disintegration along the center-unstable direction if for every given $x \in \Lambda$, each δ -adapted foliated neighborhood $\Pi_{\delta}(x)$ of x induces a disintegration $\{\mu_{\gamma}\}_{\gamma \in \Pi_{\delta}(x)}$ of $\mu \mid \hat{\Pi}_{\delta}(x)$, for all small enough $\delta > 0$, such that $\mu_{\gamma} \ll m_{\gamma}$ for $\hat{\mu}$ -a.e. $\gamma \in \Pi_{\delta}(x)$.

The physical measure is a Gibbs state

We say that μ has an absolutely continuous disintegration along the center-unstable direction if for every given $x \in \Lambda$, each δ -adapted foliated neighborhood $\Pi_{\delta}(x)$ of x induces a disintegration $\{\mu_{\gamma}\}_{\gamma \in \Pi_{\delta}(x)}$ of $\mu \mid \hat{\Pi}_{\delta}(x)$, for all small enough $\delta > 0$, such that $\mu_{\gamma} \ll m_{\gamma}$ for $\hat{\mu}$ -a.e. $\gamma \in \Pi_{\delta}(x)$.

Theorem C. Let Λ be a singular-hyperbolic attractor for a C^2 three-dimensional flow. Then the physical measure μ supported in Λ has a disintegration into absolutely continuous conditional measures μ_{γ} along center-unstable surfaces $\gamma \in \Pi_{\delta}(x)$ such that $\frac{d\mu_{\gamma}}{dm_{\gamma}}$ is positive and uniformly bounded from above, for all δ -adapted foliated neighborhoods $\Pi_{\delta}(x)$ and every $\delta > 0$. Moreover $\sup (\mu) = \Lambda$.

The positive Lyapunov exponent along a one-dimensional measurable sub-bundle E^u of E^c together with the Gibbs property of the physical measure imply

The positive Lyapunov exponent along a one-dimensional measurable sub-bundle E^u of E^c together with the Gibbs property of the physical measure imply

Corollary If Λ is a singular-hyperbolic attractor for a C^2 three-dimensional flow X_t , then the physical measure μ supported in Λ satisfies the Entropy Formula

$$h_{\mu}(X_1) = \int \log \left| \det(DX_1 \mid E^{cu}) \right| d\mu = \int \log \|DX_1 \mid F_z\| d\mu(z).$$

The positive Lyapunov exponent along a one-dimensional measurable sub-bundle E^u of E^c together with the Gibbs property of the physical measure imply

Corollary If Λ is a singular-hyperbolic attractor for a C^2 three-dimensional flow X_t , then the physical measure μ supported in Λ satisfies the Entropy Formula

$$h_{\mu}(X_1) = \int \log \left| \det(DX_1 \mid E^{cu}) \right| d\mu = \int \log \|DX_1 \mid F_z\| d\mu(z).$$

All these are valid for the *original Lorenz system* and for the *Geometric Lorenz attractors*.

The positive Lyapunov exponent along a one-dimensional measurable sub-bundle E^u of E^c together with the Gibbs property of the physical measure imply

Corollary If Λ is a singular-hyperbolic attractor for a C^2 three-dimensional flow X_t , then the physical measure μ supported in Λ satisfies the Entropy Formula

$$h_{\mu}(X_1) = \int \log \left| \det(DX_1 \mid E^{cu}) \right| d\mu = \int \log \|DX_1 \mid F_z\| d\mu(z).$$

All these are valid for the *original Lorenz system* and for the *Geometric Lorenz attractors*. This property is shared by every *uniformly hyperbolic attractor*.

Method of proof to get SRB measure

The proofs are based on constructing a finite cover of the compact set Λ by flow-boxes through convenient cross-sections of the flow near Λ .

Method of proof to get SRB measure

The proofs are based on constructing a finite cover of the compact set Λ by flow-boxes through convenient cross-sections of the flow near Λ . These cross-sections are δ -adapted for a small $\delta > 0$ as in the figure below.

Adapted cross-sections

Adapted cross-sections exist by the following property of singular-hyperbolic attractors.

Lemma Let σ be a singularity of a singular-hyperbolic attractor Λ . Then

 $W^{ss}(\sigma) \cap \Lambda = \{\sigma\}.$

Note: recall that σ is *Lorenz-like* and so it has a 1-dimensional W^u and a 2-dimensional W^s containing a 1-dimensional strong-stable manifold W^{ss} .

Adapted cross-sections near singularities

In a neighborhood of a singularity we consider the following ingoing and outgoing adapted cross-sections

The global Poincaré return map I

After having fixed a cover of Λ by such flow-boxes through adapted cross-sections, we consider the map R given by taking any point x in one cross-section and looking at the *first return of* $X_T(x)$ *to some cross-section,* for a fixed big value of T > 0.

The global Poincaré return map I

After having fixed a cover of Λ by such flow-boxes through adapted cross-sections, we consider the map R given by taking any point x in one cross-section and looking at the *first return of* $X_T(x)$ *to some cross-section,* for a fixed big value of T > 0.

This value of T > 0 is chosen to *take advantage of the volume expanding property along the center-unstable direction*.

The global Poincaré return map II

For a big *T* the return map admit an invariant (whenever *R* is defined) *uniformly expanding cone around the center-unstable direction restricted to the cross-sections*.

The global Poincaré return map II

For a big *T* the return map admit an invariant (whenever *R* is defined) *uniformly expanding cone around the center-unstable direction restricted to the cross-sections*.

Moreover the stable leaves inside each cross-section are send by the return map strictly inside the stable leaves in the image cross-section. This is the key property in our arguments.

A 1-dimensional map

From this construction, one gets a transitive, α -Hölder, 1-dimensional expanding map $f: I \rightarrow I$ with ∞ -many discontinuities and s. t. 1/|f'| has generalized bounded variation:

A 1-dimensional map

From this construction, one gets a transitive, α -Hölder, 1-dimensional expanding map $f: I \rightarrow I$ with ∞ -many discontinuities and s. t. 1/|f'| has generalized bounded variation:

$$\sup_{a=a_0 < a_1 < \dots < a_n = b} \left(\sum_{j=1}^n |f(a_i) - f(a_{i-1})|^{1/\alpha} \right)^\alpha < \infty,$$

the supremum is taken over all finite partition of I = [a, b].

A 1-dimensional map

From this construction, one gets a transitive, α -Hölder, 1-dimensional expanding map $f: I \rightarrow I$ with ∞ -many discontinuities and s. t. 1/|f'| has generalized bounded variation:

$$\sup_{a=a_0 < a_1 < \dots < a_n = b} \left(\sum_{j=1}^n |f(a_i) - f(a_{i-1})|^{1/\alpha} \right)^\alpha < \infty,$$

the supremum is taken over all finite partition of I = [a, b].

Theorem. (Keller) Let $f: I \rightarrow I$ be C^1 piecewise expanding map such that g = 1/|f'| is generalized BV. Then f has a finitely many absolutely continuous ergodic invariant measures.

End of the second lecture

Many thanks.

We shall continue tomorrow, at 9 AM.