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Maria Jos é Pacifico

pacifico@im.ufrj.br

IM-UFRJ

Rio de Janeiro - Brasil

Lorenz like flows – p. 1



Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
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Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
Theorem B. (logarithm law for the hitting time) For each
regular x0 s.t. the local dimension dµX

(x0) is defined it
holds

lim
r→0

log τr(x, x0)

− log r
= dµX

(x0) − 1 a.e. starting point x.
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Main goals

The main goal is to explain the results (Galatolo-P)
Theorem A. (decay of correlation for the Poincaré map) Let
F be the first return map associated to a geometrical
Lorenz flow. The unique SRB measure µF of F has
exponential decay of correlation with respect to Lipschitz
observables.
Theorem B. (logarithm law for the hitting time) For each
regular x0 s.t. the local dimension dµX

(x0) is defined it
holds

lim
r→0

log τr(x, x0)

− log r
= dµX

(x0) − 1 a.e. starting point x.

Remark. Theorems A and B hold for a more general class
of flows, defined axiomatically.
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Definitions

Recall:

the local dimension of a µ at x ∈ M is

dµ(x) = lim
r→0

log µ(Br(x))

log r
.

In this case µ(Br(x)) ∼ rdµ(x).
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Definitions

Recall:

the local dimension of a µ at x ∈ M is

dµ(x) = lim
r→0

log µ(Br(x))

log r
.

In this case µ(Br(x)) ∼ rdµ(x).

The hitting time τr(x, x0) is the time needed for the orbit of a
point x to enter for the first time in a ball Br(x0) centered at
x0, with small radius r.
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Plan of the talks

• Motivation
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Plan of the talks

• Motivation

• Geometric Lorenz flows

• The Wasserstein-Kantorovich distance and properties

• The first return map F has a SRB measure µF

• F has exponential decay of correlations respect to µF

• Local dimension of a measure µ

• Hitting and recurrence time

• Proof of Theorems A and B.
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Lorenz attractor

Lorenz was interested in the foundations of long range
weather forcast and, after Rayleigh (1916), and Saltzmann
(1962), exhibited a 3-dimensional o.d.e. whose solutions
seemed to depend sensitively on the initial data (1963).
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Lorenz attractor

Lorenz was interested in the foundations of long range
weather forcast and, after Rayleigh (1916), and Saltzmann
(1962), exhibited a 3-dimensional o.d.e. whose solutions
seemed to depend sensitively on the initial data (1963).

Lorenz equations:

X(x, y, z) =











ẋ = −10 · x + 10 · y
ẏ = 28 · x − y − x · z
ż = −8/3 · z + x · y .
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Lorenz attractor

Lorenz was interested in the foundations of long range
weather forcast and, after Rayleigh (1916), and Saltzmann
(1962), exhibited a 3-dimensional o.d.e. whose solutions
seemed to depend sensitively on the initial data (1963).

Lorenz equations:

X(x, y, z) =











ẋ = −10 · x + 10 · y
ẏ = 28 · x − y − x · z
ż = −8/3 · z + x · y .

The classical parameters are : α = 10, r = 28, b = 8/3.
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Easy facts about Lorenz’s equations

• (0, 0, 0) is an equilibrium and the eigenvalues of
DXt((0, 0, 0, )) are real numbers satisfying

−λ2 > λ1 > −λ3 > 0 so λ1 + λ3 > 0.

.
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• (0, 0, 0) is an equilibrium and the eigenvalues of
DXt((0, 0, 0, )) are real numbers satisfying

−λ2 > λ1 > −λ3 > 0 so λ1 + λ3 > 0.

.

• Lorenz’s equations have a solution: the vector field
associated points inward a ball centered at the origin.
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• (0, 0, 0) is an equilibrium and the eigenvalues of
DXt((0, 0, 0, )) are real numbers satisfying

−λ2 > λ1 > −λ3 > 0 so λ1 + λ3 > 0.

.

• Lorenz’s equations have a solution: the vector field
associated points inward a ball centered at the origin.

• The divergent at the origin is −(10 + 1 + 8
3) < 0.
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Easy facts about Lorenz’s equations

• (0, 0, 0) is an equilibrium and the eigenvalues of
DXt((0, 0, 0, )) are real numbers satisfying

−λ2 > λ1 > −λ3 > 0 so λ1 + λ3 > 0.

.

• Lorenz’s equations have a solution: the vector field
associated points inward a ball centered at the origin.

• The divergent at the origin is −(10 + 1 + 8
3) < 0.

• The above properties are robust.
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Numerical integration

Numerical experiments by Lorenz showed: the solutions of
the Lorenz’s equations support a zero volume attractor that
has a geometric structure like a butterfly.
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the Lorenz’s equations support a zero volume attractor that
has a geometric structure like a butterfly.
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Attractor

An attractor is a bounded region in phase-space invariant
under time evolution, such that the forward trajectories of
most (positive probability) or, even, all nearby points
converge to it.

An attractor is strange if trajectories converging to it are
sensitive with respect to initial data: trajectories of any
nearby points get apart under forward iteration by the flow.
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Lorenz’s conjecture

Based on his experiments, he conjectured the existence of
a chaotic attractor with zero volume for the fl ow generated
by the Lorenz’s equations.

Chaotic : it has sensibility with respect to initial data:
forward iteration of nearby points get far apart.
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No explicity solutions

Albeith the simplicity of the Lorenz’s equations ( 2-degree
polynomial), it was not a simple task to verify the conjecture
posed by Lorenz. There are two main difficulties:
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Albeith the simplicity of the Lorenz’s equations ( 2-degree
polynomial), it was not a simple task to verify the conjecture
posed by Lorenz. There are two main difficulties:

• conceitual: the presence of an equilibrium accumulated
by regular orbits prevents the Lorenz’attractor from
being hyperbolic.
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No explicity solutions

Albeith the simplicity of the Lorenz’s equations ( 2-degree
polynomial), it was not a simple task to verify the conjecture
posed by Lorenz. There are two main difficulties:

• conceitual: the presence of an equilibrium accumulated
by regular orbits prevents the Lorenz’attractor from
being hyperbolic.

• numerical: solutions slow down through the passage
near the equilibrium, which means unbounded return
times and thus unbounded integration errors.
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Hyperbolic sets

Λ is hyperbolic
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Hyperbolic sets

Λ is hyperbolic if there is a continuous DXt-invariant
tangent bundle decomposition TΛM = Es

Λ ⊕ EX
Λ ⊕ Eu

Λ
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Hyperbolic sets

Λ is hyperbolic if there is a continuous DXt-invariant
tangent bundle decomposition TΛM = Es

Λ ⊕ EX
Λ ⊕ Eu

Λ and
constants λ,K > 0 satisfying

1. Es
Λ is (K,λ)-contracting, i.e.

‖DXt(x)/Es
x‖ ≤ K−1e−λt,∀x ∈ Λ,∀t ≥ 0.
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Hyperbolic sets

Λ is hyperbolic if there is a continuous DXt-invariant
tangent bundle decomposition TΛM = Es

Λ ⊕ EX
Λ ⊕ Eu

Λ and
constants λ,K > 0 satisfying

1. Es
Λ is (K,λ)-contracting, i.e.

‖DXt(x)/Es
x‖ ≤ K−1e−λt,∀x ∈ Λ,∀t ≥ 0.

2. Eu
Λ is (K,λ)-expanding, i.e.

‖DXt(x)/Eu
x‖ ≥ Keλt, ∀x ∈ Λ, ∀ t ≥ 0.
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Geometrical models

The impossibility of solving the equations leads
Afraimovich-Bykov-Shil’nikov and Guckenheimer-Williams,
independently (in the seventies), to proposed a geometrical
model for the behavior of Xt generated by the Lorenz’
equations:
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Geometrical models

The impossibility of solving the equations leads
Afraimovich-Bykov-Shil’nikov and Guckenheimer-Williams,
independently (in the seventies), to proposed a geometrical
model for the behavior of Xt generated by the Lorenz’
equations:

contracting
directions

S
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The equilibrium σ

The eigenvalues λi, 1 ≤ i ≤ 3 at the singularity in a
geometrical model are real and satisfy

−λ2 > λ1 > −λ3 > 0.
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The equilibrium σ

The eigenvalues λi, 1 ≤ i ≤ 3 at the singularity in a
geometrical model are real and satisfy

−λ2 > λ1 > −λ3 > 0.

λ

λ2

σ
λ1

λ3

λ3 + λ1 0
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The equilibrium σ

The eigenvalues λi, 1 ≤ i ≤ 3 at the singularity in a
geometrical model are real and satisfy

−λ2 > λ1 > −λ3 > 0.

λ

λ2

σ
λ1

λ3

λ3 + λ1 0

In this case 1
2 < α = −λ3

λ1

< 1 < β = −λ2

λ1

.
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Main hypothesis for a Geom. Model

main hypothesis: ∃ an invariant stable foliation, Fs.
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Main hypothesis for a Geom. Model

main hypothesis: ∃ an invariant stable foliation, Fs.

λ2

S

λ1

λ3
σ
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Properties of Geom. Models

These models have attractors Λ such that

singular: Λ robustly contains a Lorenz-like singularity σ and
regular orbits
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Properties of Geom. Models

These models have attractors Λ such that

singular: Λ robustly contains a Lorenz-like singularity σ and
regular orbits
transitive: Λ contains dense orbits
zero volume: because Div(Λ) = −(10 + 1 + 8

3) < 0.

Λ : is not hyperbolic: exists a singularity accumulated by
regular orbits.
Λ is robust: can not be destroyed by small perturbations of
the model.
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How to construct a geo model

Start with a linear vector field whose orbits are as in the
figure:
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How to construct a geo model

Start with a linear vector field whose orbits are as in the
figure:
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The model and first hit map F

Let L be the linear map, L(S∗) = Σ+ ∪ Σ−.

Σ± should return to S through a flow described by a suitable
composition of a rotation R±, an expansion E±θ and a
translation T±.
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Σ± should return to S through a flow described by a suitable
composition of a rotation R±, an expansion E±θ and a
translation T±.

This composition of linear maps describes a vector field in a
region outside [−1, 1]3.
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The model and first hit map F

Let L be the linear map, L(S∗) = Σ+ ∪ Σ−.

Σ± should return to S through a flow described by a suitable
composition of a rotation R±, an expansion E±θ and a
translation T±.

This composition of linear maps describes a vector field in a
region outside [−1, 1]3.

Letting F = Eθ ◦ R ◦ T ◦ L, we have F : S⋆ → S and since
this composition preserves vertical lines of S we have that
Fs(S) = ∪{x = x0} are invariant by F and F is not defined
on Γ = S ∩ W s(σ).
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An expression forF

F (x, y) =
(

f(x), g(x, y)
)

with f, g as:

f(x) =

{

f1(x
α) x < 0

f0(x
α) x > 0

where fi = (−1)iθ · x + bi, i ∈ {0, 1}

g(x, y) =

{

g1(x
α, y · xβ) x < 0

g0(x
α, y · xβ) x > 0,

g1|I− × I → I and g0|I+ × I → I are affine maps.

Lorenz like flows – p. 18



Properties off

Set I[−1/2, 1/2]. The main properties of f : I \ {0} → I:

(f1) f(0−) = 1/2 and f(0+) = −1/2

(f2) f is differentiable on [−1/2, 1/2] \ {0}, and |f ′(x)| >
√

2

(f3) f ′(0−) = +∞ and f ′(0+) = −∞.

+1/20-1/2
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Consequences of (f1)–(f3)

Lemma(f is leo) Let f : I \ {0} → I satisfying (f1)-(f3). Then
f is locally eventually onto: for any open J, 0 /∈ J , ∃ an
interval J0 ⊂ J and n s. t. fn | J0 = f(I).
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Proof that f is leo

Proof. Pick J = J0 ⊂ I and let η = inf |f ′|.
(a) 0 /∈ J0 → ℓ(f(J0)) > η · ℓ(J0).

(b) if 0 /∈ f(J0), put J1 = f2(J0). Then ℓ(J1) > η2 · ℓ(J0).

(c) if 0 ∈ f(J0) then f2(J0) = I− ∪ I+ with

ℓ(I+) >
ℓ(f2(J0)

2
> η2 · ℓ(J0)

2
> η · ℓ(J0)

.
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Proof that f is leo

Proof. Pick J = J0 ⊂ I and let η = inf |f ′|.
(a) 0 /∈ J0 → ℓ(f(J0)) > η · ℓ(J0).

(b) if 0 /∈ f(J0), put J1 = f2(J0). Then ℓ(J1) > η2 · ℓ(J0).

(c) if 0 ∈ f(J0) then f2(J0) = I− ∪ I+ with

ℓ(I+) >
ℓ(f2(J0)

2
> η2 · ℓ(J0)

2
> η · ℓ(J0)

.

In the last case, replace J0 by I+ and re-start. As ℓ(I) < ∞
and η > 1 iterations of the biggest connected component of
f2(J0) ends after finitely many steps with the interval f(I).
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1
f ′ is BV

Lemma( 1
f ′ is BV) If f satisfies (f1)–(f3) then 1

f ′ has bounded
variation.
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1
f ′ is BV

Lemma( 1
f ′ is BV) If f satisfies (f1)–(f3) then 1

f ′ has bounded
variation.

Each branch of fLo is the composition of an affine map with
xα then it is a convex function. Hence, the derivative f ′

Lo is
monotonic on each branch, implying that (f ′

lo)
−1 is also

monotonic. On the other hand, (f ′

Lo)
−1 is bounded because

f ′

lo > 1. Thus (f ′

Lo)
−1 is monotonic and bounded and hence

is BV.
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Statistical properties offLo

Theorem.(statistical properties) f admits a unique SBR
measure µf .
Moreover dµf/dm is a BV function,
and f has exponential decay of correlations for L1 and BV
observables: for each n and observables f, g it holds:

|
∫

g(Fn(x))f(x)dm−
∫

g(x)dµ

∫

f(x)dm| ≤ C·‖g‖L1
·‖f‖·e−λn
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Properties of the mapg(x, y)

By construction g is piecewise C2.

(a) For all (x, y) ∈ Σ∗, x > 0, we have ∂yg(x, y) = xβ. As
β > 1, |x| ≤ 1/2, there is 0 < λ < 1 such that

|∂yg| < λ.

The same bound works for x < 0.

(b) For all (x, y) ∈ Σ∗, x 6= 0, we have ∂xg(x, y) = β · xβ−α.
As β − α > 0 and |x| ≤ 1/2, we get

|∂xg| < ∞.
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F preserves the vertical lines

Item (a) above implies that F (x, y) = (f(x), g(x, y)) is
uniformly contracting on the leaves of Fs:

there are constants λ < 1 and C > 0 such that

(⋆⋆) if γ is a leaf of Fs and x, y ∈ γ then

dist
(

Fn(x), Fn(y)
)

≤ λn · C · dist(x, y).
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ImageF (S)
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P-H with volume expandingEcu

Λ is partially-hiperbolic if TΛM = Es ⊕ Ecu such that

• Es is uniformly contracting,

• Es ⊕ Ecu is a dominated splitting: there are 0 < λ < 1,
c > 0, and T0 > 0 such that

‖DY T | Es
p‖ · ‖DY −T | Ecu

Y T (p)‖ < c · λT .

• Ecu is volume expanding, that is, for x ∈ Λ and t ∈ R

Jc
t (x): absolute value of the determinant of

DXt(x)/Ec
x : Ec

x → Ec
Xt(x).

Jc
t (x) ≥ Keλt, ∀x ∈ Λ t ≥ 0
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Geo. model is P-H

The splitting of R
3: E = R × {(0, 0} and F = {0} × R

2, is
preserved by DX : DXt

w · E = E and DXt
w · F = F for all t

and every point w in an orbit inside the trapping ellipsoid.
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Geo. model is P-H

The splitting of R
3: E = R × {(0, 0} and F = {0} × R

2, is
preserved by DX : DXt

w · E = E and DXt
w · F = F for all t

and every point w in an orbit inside the trapping ellipsoid.
For w on the linearised part of the flow, from S to Σ, we
have for t > 0 such that X [0,t](w) is contained in the domain
of the linearised coordinates:

1. ‖DXt
w | E‖ = eλ2t;

2. ‖DXt
w | E‖ = e(λ2−λ3)t · m

(

DXt | F ),

where m
(

DXt | F ) is the minimum norm of the linear map.
Since λ2 < 0 we see that E is uniformly contracting, this is a
stable direction.
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DXt | F ) is the minimum norm of the linear map.
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stable direction.
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Moreover

But λ2 − λ3 < 0 and so the contraction along the direction of
F is weaker than the contraction along E. This kind of
splitting E ⊕ F of R

3 is called partially hyperbolic.
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Moreover

But λ2 − λ3 < 0 and so the contraction along the direction of
F is weaker than the contraction along E. This kind of
splitting E ⊕ F of R

3 is called partially hyperbolic.
Observe also that since λ1 + λ3 > 0 we have that
|det DXt | F | = e(λ1+λ3)t and so the flow expands volume
along the F direction.
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P-H outside neig. origin

If the orbit of w passes outside the linear region k times
from Σ to S lasting s1 + · · · + sk from time 0 to time t,
then t > s1 + · · · + sk and ∃b > 0 bounding the derivatives of
DXt from 0 to t0 and so
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P-H outside neig. origin

If the orbit of w passes outside the linear region k times
from Σ to S lasting s1 + · · · + sk from time 0 to time t,
then t > s1 + · · · + sk and ∃b > 0 bounding the derivatives of
DXt from 0 to t0 and so

‖DXt
w | E‖ ≤

ebk+λ2(t−s1−···−sk) = exp
{

λ2t
(

1 − bk

λ2t
− s1 + · · · + sk

t

)

}

,

and the last expression in brackets is bounded. We see that
E is (K,λ2)-contracting for some K > 0.
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Furthermore

An entirely analogous reasoning shows that the direction E

dominates F uniformly for all t and that DXt expands
volume along F also uniformly.
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Furthermore

An entirely analogous reasoning shows that the direction E

dominates F uniformly for all t and that DXt expands
volume along F also uniformly.
Thus the maximal positively invariant set in the trapping
ellipsoid is partially hyperbolic and the flow expands volume
along a bi-dimensional invariant direction.
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Furthermore

An entirely analogous reasoning shows that the direction E

dominates F uniformly for all t and that DXt expands
volume along F also uniformly.
Thus the maximal positively invariant set in the trapping
ellipsoid is partially hyperbolic and the flow expands volume
along a bi-dimensional invariant direction.
The geometrical model is the most significant example of a
new class of attractors: singular-hyperbolic attractors.
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Singular-hyperbolic attractor

An attractor Λ for Xt is singular-hyperbolic if

• all singularities contained in Λ are hyperbolic

• parcially hiperbolic with central direction
volume expanding .
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The solution for Lorenz conjecture

• (Tucker): The original Lorenz equations do exhibit a
robust strange attractor that is partially hyperbolic with
volume expanding central direction.
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The solution for Lorenz conjecture

• (Tucker): The original Lorenz equations do exhibit a
robust strange attractor that is partially hyperbolic with
volume expanding central direction.

In another words, the fl ow given by the equations

X(x, y, z) =











ẋ = −10 · x + 10 · y
ẏ = 28x − y − x · z
ż = −8

3z + x · y ,

presents a chaotic attractor. It can be seen that this
attractor is singular-hyperbolic.
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End of the first lecture

Many thanks.

We shall continue tomorrow, at 9 AM.
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