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Neural Networks for Classification: A Survey

Guogiang Peter Zhang

Abstract—Classification is one of the most active research and [79]. Since any classification procedure seeks a functional
application areas of neural networks. The literature is vast and relationship between the group membership and the attributes
growing. This paper summarizes the some of the most important ot yne gpject, accurate identification of this underlying function

developments in neural network classification research. Specifi- . doubtlessly i tant. Third | network i
cally, the issues of posterior probability estimation, the link be- IS doubtiessly important. 1hird, neural networks are noniinear

tween neural and conventional classifiers, learning and general- models, which makes them flexible in modeling real world
ization tradeoff in classification, the feature variable selection, as complex relationships. Finally, neural networks are able to
well as the effect of misclassification costs are examined. Our pur- estimate the posterior probabilities, which provides the basis

pose is to provide a synthesis of the published research in this area - gstaplishing classification rule and performing statistical
and stimulate further research interests and efforts in the identi- analysis [138]

fied topics.
Index Terms—Bayesian classifier, classification, ensemble On the other hand, the effectiveness of neural network clas-

methods, feature variable selection, learning and generalization, sification has been tested empirically. Neural networks have
misclassification costs, neural networks. been successfully applied to a variety of real world classification
tasks in industry, business and science [186]. Applications in-
clude bankruptcy prediction [2], [96], [101], [167], [187], [195],
handwriting recognition [61], [92], [98], [100], [113], speech

LASSIFICATION is one of the most frequently en-recognition [25], [106], product inspection [97], [130], fault de-

countered decision making tasks of human activity. fsction [11], [80], medical diagnosis [19], [20], [30], [31], and
classification problem occurs when an object needs to Bgng rating [44], [163], [174]. A number of performance com-
assigned into a predefined group or class based on a numb&iisons between neural and conventional classifiers have been
of observed attributes related to that object. Many problemsiggde by many studies [36], [82], [115]. In addition, several
business, science, industry, and medicine can be treated as @gfiputer experimental evaluations of neural networks for clas-
sification problems. Examples include bankruptcy predictiogjfication problems have been conducted under a variety of con-
credit scoring, medical diagnosis, quality control, handwritteditions [127], [161].

character recognition, and speech recognition. N . e
" - DS . Although significant progress has been made in classification
Traditional statistical classification procedures such as dis-,

. . . i - related areas of neural networks, a number of issues in applying
criminant analysis are built on the Bayesian decision theor . .
ural networks still remain and have not been solved success-

[42]. In these procedures, an underlying probability model MU ly or completely. In this paper, some theoretical as well as

be assumed in order to calculate the posterior probability upon”’ .". "~ . .
P P Y pempmcal issues of neural networks are reviewed and discussed.

which the classification decision is made. One major IIIT"tam{]he vast research topics and extensive literature makes itimpos-

of the statistical models is that they work well only when the, ; : . .
. : L . Sible for one review to cover all of the work in the filed. This re-
underlying assumptions are satisfied. The effectiveness of thése = . .
. . View aims to provide a summary of the most important advances
methods depends to a large extent on the various assumptions or P
. . In neural network classification. The current research status and
conditions under which the models are developed. Users must

) ISSues as well as the future research opportunities are also dis-
have a good knowledge of both data properties and model capa-

iy . ussed. Although many types of neural networks can be used
bilities before the models can be successfully applied.

; for classification purposes [105], our focus nonetheless is on
Neural networks have emerged as an important tool fgr : .
feedforward multilayer networks or multilayer perceptrons

classification. The recent vast research activities in neur . . .
I . LPs) which are the most widely studied and used neural net-
classification have established that neural networks are'a o . . .
- . . . . __..-work classifiers. Most of the issues discussed in the paper can
promising alternative to various conventional classification
Iso apply to other neural network models.

methods. The advantage of neural networks lies in the &t o i
. . . The overall organization of the paper is as follows. After the
lowing theoretical aspects. First, neural networks are dat . ) o
. . . . Introduction, we present fundamental issues of neural classifica-
driven self-adaptive methods in that they can adjust themsel\{es

to the data without anv explicit specification of functional or°" in Section Il, including the Bayesian classification theory,
Y exp P the role of posterior probability in classification, posterior prob-

distributional form for the underlying model. Second, they arebility estimation via neural networks, and the relationships be-

: . . ; al
universal functional approximators in that neural networks C&Ween neural networks and the conventional classifiers. Sec

approximate any function with arbitrary accuracy [37], [78]fion IIl examines theoretical issues of learning and generaliza-

tion in classification as well as various practical approaches to

. INTRODUCTION

Manuscript received July 28, 1999; revised July 6, 2000. __improving neural classifier performance in learning and gener-
G. P. Zhang is with the J. Mack Robinson College of Business, Georgia Stat]e . = iabl lecti d the eff f miscl .
University, Atlanta, GA 30303 USA (e-mail: gpzhang@gsu.edu). alization. Feature variable selection and the effect of misclassi-
Publisher Item Identifier S 1094-6977(00)11206-4. fication costs—two important problems unique to classification

1094-6977/00$10.00 © 2000 IEEE



452 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 4, NOVEMBER 2000

problems—are discussed in Sections IV and V, respectively. Ei;(x) is also known as the conditional risk function. The op-
nally, Section VI concludes the paper. timal Bayesian decision rule that minimizes the overall expected
cost is
Il. NEURAL NETWORKS AND TRADITIONAL CLASSIFIERS
A. Bayesian Classification Theory Decidew; for xif Cj(x) = _wmin  Ci(x).  (5)

Bayesian decision theory is the basis of statistical Class.%hen the misclassification costs are equal (0—1 cost function),

cation methods [42]. It provides the fundamental prOlmb”'%en we have the special case (2) of the Bayesian classification
model for well-known classification procedures such as the sta b Y

tistical discriminant analysis.

Consider a general/-group classification problem in whic
each object has an associated attribute vectdrd dimensions.
Let w denote the membership variable that takes a valug; of
if an object is belong to group. Define P(w;) as the prior
probability of groupj and f(x | w;) as the probability density
function. According to the Bayes rule

f(x|w)Pw;)

rule. Note the role of posterior probabilities in the decision rules
h (2) and (5).

From (1) and (4) and note that the denominator is common to
all classes, Bayesian decision rule (5) is equivalent to: Degide
for x if S=M . i (x)P(w;) (x| w;) is the minimum. Consider
the special two-group case with two classespfandw,. We
should assigx to class 1 if

ca1(X) P(wa) f(x | wa) < c12(x) P(w1) f(x | w1)

Ploj %) = T2 ®
where P(w;|x) is the posterior probability of group or
and f(x) is the probability density functionf(x) = flz]wr) S co1(x)P(w2) ©)
> iy S e wi)P(w;)- fla|ws) ~ enal@)Plwr)

Now suppose that an object with a particular feature vector _ _ _ _ N
is observed and a decision is to be made about its group mdmfpression (6) shows the interaction of prior probabilities and

bership. The probability of classification error is misclassification cost in defining the classification rule, which
can be exploited in building practical classification models to
P(Error|x) = Z P(w; |x) alleviate the difficulty in estimation of misclassification costs.
i#j
=1-P(w;|x) if we decidew;. B. Posterior Probability Estimation via Neural Networks

Hence if the purpose is to minimize the probability of total clas- In classification problems, neural networks provide direct es-
sification error (misclassification rate), then we have the follmation of the posterior probabilities [58], [138], [156], [178].

lowing widely used Bayesian classification rule The importance of this capability is summarized by Richard and
Lippmann [138]:
Decidewy, for x if P(wy [x) = max u Plw;i|x). (2 “Interpretation of network outputs as Bayesian probabilities

=Lasgee

allows outputs from multiple networks to be combined for

This simple rule is the basis for other statistical classifieraigher level decision making, simplifies creation of rejection
For example, linear and quadratic discriminant functions can figesholds, makes it possible to compensate for difference
derived with the assumption of the multivariate normal distribietween pattern class probabilities in training and test data,
tion for the conditional density(x | w;) of attribute vectox. allows output to be used to minimize alternative risk functions,
There are two problems in applying the simple Bayes decisiand suggests alternative measures of network performance.”
rule (2). First, in most practical situations, the density functions A neural network for a classification problem can be viewed
are not known or can not be assumed to be normal and thesg-a mapping functiort” : R — RM, whered-dimensional
fore the posterior probabilities can not be determined directiyiputx is submitted to the network and ari-vectored network
Second, by using (2), the decision goal is simply to minimizgutputy is obtained to make the classification decision. The net-
the probability of misclassifying a new object. In this way, wevork is typically built such that an overall error measure such as
are indifferent with regard to the consequences of misclassifigae mean squared errors (MSE) is minimized. From the famous
tion errors. In other words, we assume that the misclassificatigast squares estimation theory in statistics (see [126]), the map-
costs for different groups are equal. This may not be the case fifig function' : x — y which minimizes the expected squared
many real world applications where the cost of a wrong assigeeror
ment is quite different for different groups.

If we can assign a cost to a misclassification error, we may Ely - Fx))? (7)
use that information to improve our decision. lgt(x) be the
cost of misclassifying to groupi when it actually belongs to is the conditional expectation ¢f givenx
groupy. The expected cost associated with assigsitmgroup
iis F(x) = Ely|x]. (8)

M
Ci(x)zzcij(x)P(w”X), i=1,2,...,M. (4) In the classification problem, the desired outpyt is
J=1 a vector of binary values and is thgth basis vector
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e; = (0,...,0,1,0,...,0)" if x € groupj. Hence the networks and statistical classifiers. The direct comparison be-
jth element ofF'(x) is given by tween them may not be possible since neural networks are non-
linear model-free method while statistical methods are basically

Fi(x) = Ely, | %] linear and model based.

=1-Ply; =1|x)+0-P(y; =0|x) By appropriate coding of the desir.ed output membership

— P(y; = 1|x) vqlugs, we may let neural networ_ks directly model some _dls—

/ criminant functions. For example, in a two-group classification

= Pw; [%). ©) problem, if the desired output is coded as 1 if the object is from

. . . . .class 1 and-1 if it is from class 2. Then, from (9) the neural
That s, the least squares estimate for the mapping function 'R&work estimates the following discriminant function:
classification problem is exactly the posterior probability.

Neural networks are universal approximators [37] and
in theory can approximate any function arbitrarily closely.

However, the mapping function represented byanetworkisna% discriminating rule is simolv: i it 0or
perfect due to the local minima problem, suboptimal network '€, diScriminating rule is simply: assigato w, g(x) > 00

architecture and the finite sample data in neural netwo?'l%r'f gr(())l;)atjli('z ' '22?; ?gﬁgf;fg?g?:;nﬁgngtsl?gri%frthreoﬁgitiﬁ{
training. Therefore, it is clear that neural networks actual (1pl) to forrr):ad'fferentd'scr'mpnantf nth)'on b tegsent'all y
provide estimates of the posterior probabilities. ! ! Iserimi unct u 1ally

The mean squared error function (7) can be derived [14 'e same chss_ﬁmatmn rule. L
[83] as As the §tat|st|cal counterpart of neural netyyorks, dllscn'mlnant
analysis is a well-known supervised classifier. Galliretral.
M [54] describe a general framework to establish the link between
MSE = Z/ [F(x) — P(w; | x)]* f(x) dx discriminant analysis and neural network models. They find that
j=17R¢ in quite general conditions the hidden layers of an MLP project

g(x) = P(wy |x) — P(wa | %x). (11)

M the input data onto different clusters in a way that these clus-
+ Z/ P(w; |x)(1 — P(w; |x))f(x)dx. (10) ters can be further aggregated into different classes. For linear
j=17R? MLPs, the projection performed by the hidden layer is shown

) S . theoretically equivalent to the linear discriminant analysis. The
The second term of the right-hand side is called the approximgs,inear MLPs, on the other hand, have been demonstrated

tion error [14] and is independent of neural networks. It reﬂecfﬁrough experiments the capability in performing more pow-
the inherentirreducible error due to randomness of the data. Th&,| nonlinear discriminant analysis. Their work helps under-
first term termed as the estimation error is affected by the effegz g the underlying function and behavior of the hidden layer
tiveness of neural network mapping. Theoretically speaking ¢, cassification problems and also explains why the neural net-
may need a large network as well as large sample data in ordigfys in principle can provide superior performance over linear
to get satisfactory approximation. For example, Funahashi [Sgkcriminant analysis. The discriminant feature extraction by
shows that for the two-groug-dimensional Gaussian classifi-y network with nonlinear hidden nodes has also been demon-
cation problem, neural networks with at leagthidden nodes strated in Asoh and Otsu [6] and Webb and Lowe [181]. Lim
have the capability to approximate the posterior probability Witﬂlder and Hadingham [103] show that neural networks can per-
arbitrary accuracy wheninfinite data is available and the trainiggy,, quadratic discriminant analysis.

proc_eeds id_eally. Empirically, itis fOl_Jnd that sample size is crit- Raudys [134], [135] presents a detailed analysis of nonlinear
ical in learning but the number of hidden nodes may not be Sfhgle layer perceptron (SLP). He shows that during the adap-

important [83], [138]. _tive training process of SLP, by purposefully controlling the
That the outputs of neural networks are least square estimaig |assifier complexity through adjusting the target values,

of the Bayesiama posterioriprobabilities is also valid for Other,learning—steps, number of iterations and using regularization
types of cost or error function such as the cross entropy functigmg the decision boundaries of SLP classifiers are equivalent

[63], [138]. The cross entropy function can be a more apprg cjose to those of seven statistical classifiers. These statistical

priate criterion than the squared error cost function in trainingasifiers include the Enclidean distance classifier, the Fisher
neural networks for classification problems because of their hsear discriminant function, the Fisher linear discriminant

nary output characteristic [144]. Improved performance and fgiction with pseudo-inversion of the covariance matrix, the
duced training time have been reported with the cross entro%(
g

; i neralized Fisher linear discriminant function, the regularized
function [75], [77]. Miyake and Kanaya [116] show that neurgfnear giscriminant analysis, the minimum empirical error

networks trained with a generalized mean-squared error obj@fyssifier, and the maximum margin classifier [134]. Kanaya
tive function can yield the optimal Bayes rule. and Miyake [88] and Miyake and Kanaya [116] also illustrate
theoretically and empirically the link between neural networks
and the optimal Bayes rule in statistical decision problems.
Statistical pattern classifiers are based on the Bayes decisiohogistic regression is another important classification tool.

theory in which posterior probabilities play a central role. Thim fact, it is a standard statistical approach used in medical
fact that neural networks can in fact provide estimates of padiagnosis and epidemiologic studies [91]. Logistic regression
terior probability implicitly establishes the link between neuras often preferred over discriminant analysis in practice [65],

C. Neural Networks and Conventional Classifiers
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[132]. In addition, the model can be interpreted as posteritirat both underfitting and overfitting will affect generalization
probability or odds ratio. It is a simple fact that when theapability of a model. Therefore a model should be built in such
logistic transfer function is used for the output nodes, simp&way that only the underlying systematic pattern of the popu-
neural networks without hidden layers are identical to logistiation is learned and represented by the model.
regression models. Another connection is that the maximumThe underfitting and overfitting phenomena in many data
likelihood function of logistic regression is essentially thenodeling procedures can be well analyzed through the
cross-entropy cost function which is often used in trainingrell-known bias-plus-variance decomposition of the prediction
neural network classifiers. Schumachar al. [149] make a error. In this section, the basic concepts of bias and variance
detailed comparison between neural networks and logistis well as their connection to neural network classifiers are
regression. They find that the added modeling flexibility ofiscussed. Then the methods to improve learning and gener-
neural networks due to hidden layers does not automaticadlijzation ability through bias and/or variance reductions are
guarantee their superiority over logistic regression becauserefiewed.
the possible overfitting and other inherent problems with neural
networks [176]. A. Bias and Variance Composition of the Prediction Error

Links between neural and other conventional classifiers haveGemaret al.[57] give a thorough analysis of the relationship
been illustrated by [32], [33], [74], [139], [140], [151], [175]. between learning and generalization in neural networks based
Ripley [139], [140] empirically compares neural networks witlon the concepts of model bias and model variance. A prespec-
various classifiers such as classification tree, projection pursifiégd model which is less dependent on the data may misrepre-
regression, linear vector quantization, multivariate adaptive réent the true functional relationship and have a large bias. On
gression splines and nearest neighbor methods. the other hand, a model-free or data-driven model may be too

A large number of studies have been devoted to empiriagg&pendent on the specific data and have a large variance. Bias
comparisons between neural and conventional classifiers. Tl variance are often incompatible. With a fixed data set, the
most comprehensive one can be found in Mictieal. [115] effort of reducing one will inevitably cause the other increasing.
which reports a large-scale comparative study—the StatLpgyood tradeoff between model bias and model variance is nec-
project. In this project, three general classification approachessary and desired in building a useful neural network classifier.
of neural networks, statistical classifiers and machine learningwithout loss of generality, consider a two-group classifica-
with 23 methods are compared using more than 20 different réiah problem in which the binary output variabjec {0,1} is
data sets. Their general conclusion is that no single classifiefated to a set of input variables (feature vectoby
is the best for all data sets although the feedforward neural
networks do have good performance over a wide range of prob- y=r(x)+e
lems. Neural networks have also been compared with decis
trees [28], [36], [66], [104], [155], discriminant analysis [36]
[127], [146], [161], [193], CART [7], [40]k-nearest-neighbor
[82], [127], and linear programming method [127].

{/(\)/HereF(x) is the target or underlying function ands assumed
to be a zero-mean random variable. From (8) and (9), the target
function is the conditional expectation pfgivenx, that is

F(x) = B(y|x) = Plw | %). (12)

IIl. L EARNING AND GENERALIZATION Given a particular training data sBty of size N, the goal of

Learning and generalization is perhaps the most importdRfdeling is to find an estimatg(x; Dy ), of F(x) such thatan
topic in neural network research [3], [18], [157], [185]. Learniné’vera” estimation error can b_e minimized. The most commonly
is the ability to approximate the underlying behavior adaptive§s€d performance measure is the mean squared error
from the training data while generalization is the ability to pre- MSE = El(y — D)2
dict well beyond the training data. Powerful data fitting or func- SE = Elly - /(x; 21\‘)) ] )
tion approximation capability of neural networks also makes = E[(y = F))'1+ (f(x: D) = F(x))". (13)

them susceptible to the overfitting problem. The symptom ‘Ptfis important to notice that the MSE depends on the particular

an overfitting model is that it fits the training sample very well; ;- setDy. A change of the data set and/or sample size may
but has poor generalization capability when used for predicti Bsult in a change in the estimation function and hence the esti-
purposes. Generalization is a more desirable and critical featHgé

b h t 2 classifier i K tion error. In most applications, the training data/3gtrep-
ecause the most common use of a classifier Is to make g9@denis 4 random sample from the population of all possible data

prediction on new or unknown objects. A number of praCtiC@ets of sizeNV. Considering the random nature of the training

network deS|gn'|ssues relate'd to learning anq generallzanonér%l-ta’ the overalpredictionerror of the model can be written as
clude network size, sample size, model selection, and feature se-

lection. Wolpert [188] addresses most of these issues of learningEp { E[(y — f(x; Dy))?]}
and generallzatpn W|th|n.a ger_1era| Bayesian framev_vork. — El(y — F(x))2] + Ep[(f(x; Dy) — F(x))?]  (14)

In general, a simple or inflexible model such as a linear clas-
sifier may not have the power to learn enough the underlying ighere E, denotes the expectation over all possible random
lationship and hence underfit the data. On the other hand, cosamples of sample siz&. In the following, D will be used
plex flexible models such as neural networks tend to overfit the represent the data set with the fixed sample 8izior con-
data and cause the model unstable when extrapolating. Itis cleanience. Since the first term on the right hand sifify —
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F(x))?] = E[¢?), is independent of both the training sampléo produce accurate classification. That simple classifiers often
and the underlying function, it reflects the irreducible estimagerform well in practice [76] seems to support Friedman’s find-
tion error because of the intrinsic noise of the data. The secangs.
term on the right hand side of (14), therefore, is a nature measure
of the effectiveness of(x; D) as a predictor of. This term can B. Methods for Reducing Prediction Error
be further decomposed as [57]
As a flexible “model-free” approach to classification, neural
networks often tend to fit the training data very well and thus

. 2
Ep[(f(x; D) — E(y[x))°] have low bias. But the potential risk is the overfitting that causes
= {Ep[f(x;D)] — E(y|x)}? high variance in generalization. Dietterich and Kong [41] point
+ Ep{(f(x; D) — Ep|f(x; D)])?}. (15) outin the machine learning context that the variance is a more

important factor than the learning bias in poor prediction perfor-

The first term on the right hand side is the square of the biggance. Breiman [26] finds that neural network classifiers be-
and is for simplicity called model bias while the second one 18ng to unstable prediction methods in that small changes in
termed as model variance. This is the fambias plus variance the training sample could cause large variations in the test re-
decomposition of the prediction error. sults. Much attention has been paid to this problem of overfitting

Ideally, the optimal model that minimizes the overall MSE" high variance in the literature. A majority of research effort
in (14) is given byf(x; D) = E(y|x), which leaves the min- has been devoted to developing methods to reduce the overfit-
imum MSE to be the intrinsic erraE[¢2]. In reality, however, ting effect. Such methods include cross validation [118], [184],
because of the randomness of the limited datalsethe esti- training with penalty terms [182], and weight decay and node
matef (x; D) is also a random variable which will hardly be thedruning [137], [148]. Weigend [183] analyzes overfitting phe-
best possible functiof(y | x) for a given data set. The bias andiomena by introducing the concept of the effective number of
variance terms in (15) hence provide useful information on hddden nodes. An interesting observation by Dietterich [39] is
the estimation differs from the desired function. The model bi&at improving the optimization algorithms in training does not
measures the extent to which the average of the estimation fufi@ve positive effect on the testing performance and hence the
tion over all possible data sets with the same size differs from tAgerfitting effect may be reduced by “undercomputing.”
desired function. The model variance, on the other hand, meaWang [179] points out the unpredictability of neural networks
sures the sensitivity of the estimation function to the traininig classification applications in the context of learning and gen-
data set. Although it is desirable to have both low bias and Ig@valization. He proposes a global smoothing training strategy
variance, we can not reduce both at the same time for a gii@himposing monotonic constraints on network training, which
data set because these goals are conflicting. A model that is [égems effective in solving classification problems [5].
dependent on the data tends to have low variance but high bia&nsemble method or combining multiple classifiers [21], [8],
if the model is incorrect. On the other hand, a model that fits thie4], [67], [87], [128], [129], [192] is another active research
data well tends to have low bias but high variance when appliatea to reduce generalization error [153]. By averaging or voting
to different data sets. Hence a good model should balance vib# prediction results from multiple networks, the model vari-
between model bias and model variance. ance can be significantly reduced. The motivation of combining

The work by Gemaet al.[57] on bias and variance tradeoffseveral neural networks is to improve the out-of-sample clas-
under the guadratic objective function has stimulated a lot sification performance over individual classifiers or to guard
research interest and activities in the neural network, machiagainst the failure of individual component networks. It has been
learning, and statistical communities. Wolpert [190] extends tls@own theoretically that the performance of the ensemble can
bias-plus-variance dilemma to a more general bias-variance-oot be worse than any single model used separately if the pre-
variance tradeoff in the Bayesian context. Jacobs [85] studidistions of individual classifier are unbiased and uncorrelated
various properties of bias and variance components for mi429]. Tumer and Ghosh [172] provide an analytical frame-
tures-of-experts architectures. Dietterich and Kong [41], Kongork to understand the reasons why linearly combined neural
and Dietterich [94], Breiman [26], Kohavi and Wolpert [93]classifiers work and how to quantify the improvement achieved
Tibshirani [168], James and Hastie [86], and Heskes [71] halg combining. Kittleret al. [90] present a general theoretical
developed different versions of bias-variance decomposition fisamework for classifier ensembles. They review and compare
zero-one loss functions of classification problems. These alt@rany existing classifier combination schemes and show that
native decompositions provide insights into the nature of gemany different ensemble methods can be treated as special cases
eralization error from different perspectives. Each decomposicompound classification where all the pattern representations
tion formula has its own merits as well as demerits. Noticingre used jointly to make decisions.
that all formulations of the bias and variance decomposition in An ensemble can be formed by multiple network architec-
classification are in additive forms, Friedman [48] points outires, same architecture trained with different algorithms, dif-
that the bias and variance components are not necessarily atitient initial random weights, or even different classifiers. The
tive and instead they can be “interactive in a multiplicative anmbmponent networks can also be developed by training with dif-
highly nonlinear way.” He finds that this interaction may be eXerent data such as the resampling data. The mixed combination
ploited to reduce classification errors because bias terms nayeural networks with traditional statistical classifiers has also
be cancelled by low-variance but potentially high-bias methofieen suggested [35], [112].
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There are many different ways of combining individuabn previous constructed ensemble’s performances with more
classifiers [84], [192]. The most popular approach to comweights giving to those cases mostly likely to be misclassified.
bining multiple classifiers is via simple average of outputs fromreiman [27] shows that both bagging and arcing can reduce
individual classifiers. But combining can also be done withias but the reduction in variance with these approaches is
weighted averaging that treats the contribution or accuracy mofich larger.
component classifiers differently [68], [67], [84]. Nonlinear Although much effort has been devoted in combining
combining methods such as Dempster—Shafer belief-basedthod, several issues remain or have not completely solved.
methods [141], [192], rank-based information [1], voting hese include the choice of individual classifiers included in
schemes [17], and order statistics [173] have been propostmt ensemble, the size of the ensemble, and the general optimal
Wolpert [189] proposes to use two (or more) levels of stackeehy to combine individual classifiers. The issue about under
networks to improve generalization performance of neuralhat conditions combining is most effective and what methods
network classifiers. The first level networks include a varietghould be included is still not completely solved. Combining
of neural models trained with leave-one-out cross validatioreural classifiers with traditional methods can be a fruitful
samples. The outputs from these networks are then usedresearch area. Since ensemble methods are very effective when
inputs to the second level of networks that provide smoothéalividual classifiers are negatively related [85] or uncorrelated
transformation into the predicted output. [129], there is a need to develop efficient classifier selection

The error reduction of ensemble method is mainly due 8zhemes to make best use of the advantage of combining.
the reduction of the model variance rather than the model bias.

Since the ensemble method works better if different classifiers

in the ensemble disagree each other strongly [95], [111], [129],

[141], some of the models in the ensemble could be highly bi- Selection of a set of appropriate input feature variables is an
ased. However, the averaging effect may offset the bias and misngortant issue in building neural as well as other classifiers.
importantly decrease the sensitivity of the classifier to the nelihe purpose of feature variable selection is to find the smallest
data. It has been observed [59] that it is generally more desirabéd of features that can result in satisfactory predictive perfor-
to have an error rate estimator with small variance than an unance. Because of the curse of dimensionality [38], it is often
biased one with large variance. Empirically a number of studiegcessary and beneficial to limit the number of input features in
[41], [93] find that the prediction error reduction of ensembla classifier in order to have a good predictive and less compu-
method is mostly accounted for by the reduction in variance.tationally intensive model. Out-of-sample performance can be

Although in general, classifier combination can improve gefmmproved by using only a small subset of the entire set of vari-
eralization performance, correlation among individual classibles available. The issue is also closely related to the principle
fiers can be harmful to the neural network ensemble [69], [12%f parsimony in model building as well as the model learning
[172]. Sharkey and Sharkey [154] discuss the need and benddits! generalization discussed in Section lI.
of ensemble diversity among the members of an ensemble foNumerous statistical feature selection criteria and search al-
generalization. Rogova [141] finds that the better performangerithms have been developed in the pattern recognition liter-
of a combined classifier is not necessarily achieved by comture [38], [52]. Some of these statistical feature selection ap-
bining classifiers with better individual performance. Insteagiroaches can not be directly applied to neural classifiers due
it is more important to have independent classifiers in the eto-nonparametric nature of neural networks. Recently there are
semble. His conclusion is in line with that of Perron and Coop@icreasing interests in developing feature variable selection or
[129] and Krogh and Vedelsby [95] that ensemble classifiedmension reduction approaches for neural network classifiers.
can perform better if individual classifiers considerably disagrédost of the methods are heuristic in nature. Some are proposed
with each other. based on the ideas similar to their statistical counterparts. It is

One of the ways to reduce correlation among componeound under certain circumstances that the performance of a
classifiers is to build the ensemble model using different featuneural classifier can be improved by using statistically indepen-
variables. In general, classifiers based on different featutent features [49].
variables are more independent than those based on differerdne of the most popular methods in feature selection is the
architectures with the same feature variables [73], [193jrinciple componentanalysis (PCA). Principle component anal-
Another effective method is training with different data setysis is a statistical technique to reduce dimension without loss of
Statistical resampling techniques such as bootstrapping [45] #ire intrinsic information contained in the original data. As such,
often used to generate multiple samples from original traininis often used as a pre-processing method in neural network
data. Two recently developed ensemble methods based ti@ining. One problem with PCA is that it is a kind of unsuper-
bootstrap samples are “bagging” [26] and “arcing” classifiersised learning procedure and does not consider the correlation
[27]. Bagging (forbootstrapaggegation and combing) and between target outputs and input features. In addition, PCA is
arcing (for adaptive resampling andccombining) are similar a linear dimension reduction technique. It is not appropriate for
methods in that both combine multiple classifiers constructedmplex problems with nonlinear correlation structures.
from bootstrap samples and vote for classes. The bagginglhe linear limitation of the PCA can be overcome by directly
classifier generates simple bootstrap samples and combinseig neural networks to perform dimension reduction. It has
by simple majority voting while arcing uses an adaptivbeen shown that neural networks are able to perform certain
bootstrapping scheme which selects bootstrap samples basadinear PCA [70], [125], [147]. Karhunen and Joutsensalo

IV. FEATURE VARIABLE SELECTION
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[89] have discussed many aspects of PCA performed by neudsing two simulation problems, they find that the method can
networks. Battiti [16] proposes to use mutual information as théentify relevant features on which a more accurate and faster
guide to evaluate each feature’s information content and selkrning neural classifiers can be achieved.
features with high information content. Weight elimination and node pruning are techniques often
A number of heuristic measures have been proposed to eged to remove unnecessary linking weights or input nodes
mate the relative importance or contribution of input featurekiring the network training. One of the earlier methods is
to the output variable. One of the simplest measures is the stira optimal brain damage (OBD) [99]. With this approach,
of the absolute input weights [150] to reflect the impact of that saliency measure is calculated for each weight based on a
input variable on the output. The limitation of this measursimplified diagonal Hessian matrix. Then the weights with
is obvious since it does not consider the impact of perhahee lowest saliency can be eliminated. Based on the idea
more important hidden node weights. Another simple measwe OBD, Cibaset al. [34] develop a procedure to remove
is the sensitivity index [150] which is the average change insignificant input nodes. Mozer and Smolensky [119] describe
the output variable over the entire range of a particular inpatnode pruning method based on a saliency measure that is the
variable. While intuitively appealing, these measures are rdifference of the error between when the node is removed and
useful in measuring nonlinear effect of the input variable sinaehen the node is present. Egmont-Petereseal. [46] propose
they don not take consideration of hidden layer weights. a method for pruning input nodes based on four feature metrics.
Several saliency measures of input variables explicitigeed [137] presents a review of some pruning algorithms used
consider both input and hidden weights and their interactiomsneural network models.
on the network output. For example, pseudo weight [133] All selection criteria and search procedures in feature se-
is the sum of the product of weights from the input node tection with neural networks are heuristic in nature and lack
the hidden nodes and corresponding weights from the hiddefnrigorous statistical tests to justify the removal or addition
nodes to the output node. An important saliency measwte features. Hence, their performance may not be consistent
is proposed by Garson [55] who partitions the hidden layand robust in practical applications. Statistical properties of the
weights into components associated with each input node asadiency measures as well as the search algorithms must be es-
then the percentage of all hidden nodes weights attributalddlished in order to have more general and systematic feature
to a particular input node is used to measure the importarssection procedures. More theoretical developments and exper-
of that input variable. Garson’s measure has been studiedilmental investigations are needed in the filed of feature selec-
many researchers and some modifications and extensions hae.
been made [22], [56], [60], [114], [123]. Natét al. [123]
experimentally evaluate the Garson’s saliency measure and
conclude that the measure works very well under a variety of
conditions. Sung [162] studies three methods of sensitivity In the literature of neural network classification research and
analysis, fuzzy curves, and change of mean square errorafiplication, few studies consider misclassification costs in the
rank input feature importance. Steppe and Bauer [158] classifigssification decision. In other words, researchers explicitly or
all feature saliency measures used in neural networks inaplicitly assume equal cost consequences of misclassification.
derivative-based and weight-based categories with the fornwith the equal cost or 0-1 cost function, minimizing the overall
measuring the relative changes in either neural network outmlassification rate is the sole objective. Although assuming 0-1
or the estimated probability of error and the latter measuring thest function can simplify the model development, equal cost
relative size of the weight vector emanating from each featurassumption does not represent many real problems in quality
Since exhaustive search through all possible subsetsaskurance, acceptance sampling, bankruptcy prediction, credit
feature variables is often computationally prohibitive, heuristitsk analysis, and medical diagnosis where uneven misclassifi-
search procedures such as forward selection and backweation costs are more appropriate. In these situations, groups are
elimination are often used. Based on Garson’'s measure aoffen unbalanced and a misclassification error can carry signif-
saliency, Glorfeld [60] presents a backward elimination pracantly different consequences on different groups.
cedure to select more predictive feature variables. Steppe andfictor and Zhang [177] present a detailed investigation on
Bauer [159], Steppet al. [160], and Huet al. [81] use the the effect of misclassification cost on neural network classi-
Bonferroni-type or likelihood-ratio test statistic as the moddiers. They find that misclassification costs can have significant
selection criterion and the backward sequential eliminatiompact on the classification results and the appropriate use
approach to select features. Setiono and Liu [152] also develaipcost information can aid in optimal decision making. To
a backward elimination method for feature selection. Theileal with asymmetric misclassification cost problem, Lowe
method starts with the whole set of available feature variablasd Webb [107], [108] suggest using weighted error function
and then for each attribute variable, the accuracy of the netwankd targeting coding to incorporate the prior knowledge about
is evaluated with all the weights associated with that variabilee relative class importance or different misclassification
set to zero. The variable that gives the lowest decrease in acoosts. The proposed schemes are shown effective in terms of
racy is removed. Belue and Bauer [22] propose a confidenioeproved feature extraction and classification performance.
interval method to select salient features. A confidence intervalThe situations of unequal misclassification costs often occur
on the average saliency is constructed to discriminate whethevlaen groups are very unbalanced. The costs of misclassifying
feature has significant contribution to the classification abilitgubjects in smaller groups are often much higher. Under the

V. MISCLASSIFICATION COSTS
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assumption of equal consequences of misclassification,siier combination, and uneven misclassification treatment. In

classifier tends to bias toward the larger groups that have madition, as a practical decision making tool, neural networks
observations in the training sample. For some problems suwded to be systematically evaluated and compared with other
as medical diagnosis, we may know the prior probabilitiesew and traditional classifiers. Recently, several authors have
of group memberships and hence can incorporate thempiointed out the lack of the rigorous comparisons between neural
the training sample composition. However, a large trainingetwork and other classifiers in the current literature [43], [47],

sample is often required in order to have enough representatii3l], [145]. This may be one of the major reasons that mixed

of smaller groups. Barnard and Botha [13] find that whileesults are often reported in empirical studies.

neural networks are able to make use of the prior probabilitiesOther research topics related to neural classification include

relatively efficiently, the large sample size can improve penetwork training [12], [15], [62], [124], [142], model design and
formance. An alternative approach in selecting training setselection [50], [72], [117], [121], [122], [180], [194], sample
using equal number of examples from each group. The resudige issues [51], [135], [136], Bayesian analysis [102], [109],
can be easily extended to test sets with unbalanced gro{p0], [120], and wavelet networks [165], [166], [196]. These
by considering the different prior probabilities in trainingssues are common to all applications of neural networks and
and test sets [24]. Lowe and Webb [107] propose a weightedme of them have been previously reviewed [4], [10], [29],
error function with a weighting factor to account for differenf120], [137], [192]. It is clear that research opportunities are
group proportions between the training set and the test sgbundant in many aspects of neural classifiers. We believe that
In a bankruptcy prediction study, Wilson and Sharda [18The multidisciplinary nature of the neural network classification
investigate the effect of different group compositions in trainingesearch will generate more research activities and bring about
and test sets on the classification performance. They concludere fruitful outcomes in the future.

that the neural network classifier can have better predictive
performance using balanced training sample. However if the
test set contains too few members of the more important group,
the true model performance may not be correctly determined. (1

Although classification costs are difficult to assign in real
problems, ignoring the unequal misclassification risk for dif- [2]
ferent groups may have significant impact on the practical use
of the classification. It should be pointed out that a neural clas-[3
sifier which minimizes the total number of misclassification er-
rors may not be useful for situations where different misclassi- 4]
fication errors carry highly uneven consequences or costs. Moré
research should be devoted to designing effective cost-basef]
neural network classifiers.

[6]
VI. CONCLUSION

Classification is the most researched topic of neural networks.m
This paper has presented a focused review of several important
issues and recent developments of neural networks for classi-
fication problems. These include the posterior probability esti-
mation, the link between neural and conventional classifiers, the8l
relationship between learning and generalization in neural netyq
work classification, and issues to improve neural classifier per-
formance. Although there are many other research topics that
have been investigated in the literature, we believe that this sV
lected review has covered the most important aspects of neurak]
networks in solving classification problems.

The research efforts during the last decade have made signif-,
icant progresses in both theoretical development and practical
applications. Neural networks have been demonstrated to bel%!
competitive alternative to traditional classifiers for many pracqi4)
tical classification problems. Numerous insights have also been
gained into the neural networks in performing classification as!®!
well as other tasks [23], [169]. However, while neural networks
have shown much promise, many issues still remain unsolved qrs]
incompletely solved. As indicated earlier, more research should
be devoted to developing more effective and efficient methodFl7
in neural model identification, feature variable selection, clas-
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