Chapter 5. Differential Geometry of Surfaces

5.1 Surface in parametric form

In 3D, a surface can be represented by

1. Explicit form \(z = f(x,y) \)
2. Implicit form \(f(x,y,z) = 0 \)
3. Vector form \(\mathbf{r}(x,y) = (x,y,f(x,y))^T \), or more general \(\mathbf{r}(u,v) = (x(u,v),y(u,v),z(u,v))^T \) depending on two parameters.

Example 1. The sphere of radius \(a \) has the geographical form

\[
\mathbf{r}(\theta,\phi) = (a \cos \theta \cos \phi, a \cos \sin \phi, a \sin \theta)^T \quad 0 \leq \theta \leq \pi \quad 0 \leq \phi \leq 2\pi
\]

Example 2. The cylinder built on the curve \(\mathbf{r}(t) = (x(t),y(t))^T \), \(a \leq t \leq b \) in the xy-plane has the form

\[
\mathbf{r}(u,v) = (x(u),y(u),v)^T \quad a \leq u \leq b, -\infty < v < \infty
\]

Example 3. Surface of revolution by rotating a curve \(\mathbf{r}(t) = (p(t),0,q(t))^T \) \(a \leq t \leq b \) about the z-axis

\[
\mathbf{r}(u,v) = \mathbf{R}_z \mathbf{r}(t) = \begin{bmatrix}
\cos v & -\sin v \\
\sin v & \cos v \\
0 & 1
\end{bmatrix} \begin{pmatrix} p(u) \\ 0 \\ q(u) \end{pmatrix} = (p(u) \cos v, p(u) \sin v, q(u))^T
\]

\[a \leq u \leq b, 0 \leq v \leq 2\pi \]

Specical cases are: a torus with \(\mathbf{r}(t) = (R + a \cos t, 0, a \sin t)^T \), \(0 \leq t \leq 2\pi \)
A cone with \(\mathbf{r}(t) = (t, 0, mt)^T \), \(-\infty \leq t \leq \infty \)

Tangent vectors on the surface are \(\mathbf{r}_u(u,v) \) and \(\mathbf{r}_v(u,v) \). Hence a unit normal \(\mathbf{n} \) at \(\mathbf{r}(u,v) \) is given by

\[
\mathbf{n} = \pm \frac{\mathbf{r}_u(u,v) \times \mathbf{r}_v(u,v)}{|\mathbf{r}_u(u,v) \times \mathbf{r}_v(u,v)|}
\]
assuming \(\mathbf{r}_u \times \mathbf{r}_v \neq 0 \) at \((u,v) \), (non-singular point).

If the surface is given implicitly \(f(x,y,z) = 0 \), then

\[
\mathbf{n} = \pm \frac{\nabla f}{|\nabla f|}
\]
5.2 Metric properties

Distance on the surface is measured by

\[
\begin{bmatrix}
\frac{dx}{du} \\
\frac{dy}{du} \\
\frac{dz}{du}
\end{bmatrix}
= \frac{d\vec{r}}{du} = \vec{r}_u du + \vec{r}_v dv
= \begin{bmatrix}
\frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\
\frac{\delta y}{\delta u} & \frac{\delta y}{\delta v} \\
\frac{\delta z}{\delta u} & \frac{\delta z}{\delta v}
\end{bmatrix}
\begin{bmatrix}
du \\
dv
\end{bmatrix}
= A\vec{u}
\]

\[
ds^2 = d\vec{r} \cdot d\vec{r} = (d\vec{r})^T d\vec{r}
= d\vec{u}^T A^T A \vec{u}
= d\vec{u}^T B d\vec{u}
\]

where \(B = A^T A = \begin{bmatrix}
\vec{r}_u \cdot \vec{r}_u & \vec{r}_u \cdot \vec{r}_v \\
\vec{r}_v \cdot \vec{r}_u & \vec{r}_v \cdot \vec{r}_v
\end{bmatrix}
= \begin{bmatrix}
E & F \\
F & G
\end{bmatrix}
\]

in standard notation

This is the \(1 \text{st fundamental form} \) of the surface:

\[
ds^2 = Edu^2 + 2Fdu dv + Gdv^2
\]

The unit tangent \(\hat{t} \) along the curve \(\vec{r}(t) = \vec{r}(u(t), v(t)) \) is

\[
\hat{t} = \frac{\dot{\vec{r}}}{|\dot{\vec{r}}|} = \frac{A\dot{\vec{u}}}{(\dot{\vec{u}}^T B\dot{\vec{u}})^{1/2}}
\]

The length of the segment of the curve \(\vec{r}(t) \) from \(t = t_0 \) to \(t = t_1 \) is

\[
s = \int_{t_0}^{t_1} |\dot{\vec{r}}| dt
= \int_{t_0}^{t_1} (A\dot{\vec{u}}^T B\dot{\vec{u}})^{1/2} dt
\]

If two curves \(\vec{r}_i(t) = \vec{r}(u_i(t), v_i(t)) \) intersect at an angle \(\theta \) on the surface, then

\[
\cos \theta = \hat{t}_1 \cdot \hat{t}_2 = \frac{\dot{\vec{u}}_1 A^T \dot{\vec{u}}_2}{(\dot{\vec{u}}_1 B\dot{\vec{u}}_1)^{1/2}(\dot{\vec{u}}_2 B\dot{\vec{u}}_2)^{1/2}}
= \frac{\dot{\vec{u}}_1 B\dot{\vec{u}}_2}{ds_1 ds_2}
\]

\[
\vec{r}(u + \delta u, v + \delta v)
\]

\[
\vec{r}(u, v)
\]

\[
\vec{r}(u, v + \delta v)
\]

\[
\vec{r}(u + \delta u, v)
\]

\[
dA
\]

\[
v
\]

\[
u
\]
An elementry area dA will be given by

$$dA = \left| \left[\vec{r}(u + du, v) - \vec{r}(u, v) \right] \times \left[\vec{r}(u, v + dv) - \vec{r}(u, v) \right] \right|$$

$$\approx \left| \vec{r}_u du \times \vec{r}_v dv \right|$$

$$= \left| \vec{r}_u \times \vec{r}_v \right| dudv$$

We have

$$\left| \vec{r}_u \times \vec{r}_v \right| = \left| \vec{r}_u \right|^2 \cdot \left| \vec{r}_v \right|^2 - \left(\vec{r}_u \cdot \vec{r}_v \right)^2 = EG - F^2 = \det(B) = |B|$$

Thus

$$A_R = \int_R \frac{1}{2} |B| dudv$$

for any Region R on the surface.

5.3 Curvatures

Recalled that for a general space curve $\vec{y}(t)$,

$$\vec{y}'(t) = \dot{\vec{y}}(t) = \vec{s}'(t)$$

$$\vec{y}''(t) = \ddot{\vec{y}}(t) = \vec{s}''(t) + \dot{s}^2 \hat{N}$$

where \hat{N} is the principal normal to the curve, not to confuse with the normal \hat{n} to the surface. If $\vec{y}(t)$ lies on the surface, then $\vec{y}(t) = \vec{r}(u(t), v(t))$, so that

$$\vec{r} = \vec{r}_u \hat{u} + \vec{r}_v \hat{v}$$

Differentiating again

$$\vec{r}'' = \vec{r}_{uu} \hat{u}^2 + 2 \vec{r}_{uv} \hat{u} \hat{v} + \vec{r}_{vv} \hat{v}^2 + \vec{r}_u \ddot{\hat{u}} + \vec{r}_v \ddot{\hat{v}}$$

Notice that the surface normal \hat{n} is perpendicular to \hat{t}, \hat{u} and \hat{v}

$$\therefore \hat{v} \cdot \hat{n} = \hat{s}^2 k \hat{N} \cdot \hat{n} = \hat{n} \cdot \vec{r}_{uu} \hat{u}^2 + 2 \hat{n} \cdot \vec{r}_{uv} \hat{u} \hat{v} + \hat{n} \cdot \vec{r}_{vv} \hat{v}^2$$

$$= \hat{u}^T \begin{bmatrix} \vec{r}_{uu} & \vec{r}_{uv} \\ \vec{r}_{uv} & \vec{r}_{vv} \end{bmatrix} \hat{u} = \hat{u}^T \hat{D} \hat{u}$$
The right-hand side is the second fundamental form of the surface,
\[D = \begin{bmatrix} L & M \\ M & N \end{bmatrix} \] is standard notation.

The normal curvature \(\kappa_n \) of the curve \(\vec{y}(t) \) in the surface is defined to be
\[\kappa_n = \frac{\vec{y} \cdot \hat{n}}{S^2} = \frac{\dot{u}^T D \ddot{u}}{\dot{u}^T B \dot{u}} \]

Note that \(\kappa_n = \kappa \hat{N} \cdot \hat{n} = \kappa \cos \theta \), i.e. it is the component of \(\kappa \) in the direction of \(\hat{n} \). The other component of \(\kappa \) in the tangent plane is known as the geodesic curvature \(\kappa_g \), because of orthogonality, it has the magnitude
\[\kappa_g^2 = \kappa^2 - \kappa_n^2 = \kappa^2 \sin^2 \theta \]

A surface curve \(\vec{y}(t) \), for which \(\kappa_g = 0 \) at every point is called a geodesic, (as straight as possible on the surface).

Consider row \(\kappa_n \) as a function of the direction \(\dot{u} = \left(\frac{du}{dt}, \frac{dv}{dt} \right)^T \),

Let \(\lambda = \frac{dv}{du} \) then
\[\kappa_n = \kappa_n(\lambda) = \frac{Lu^2 + 2Mu\dot{v} + Nu^2}{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2} = \frac{L + 2M\lambda + N\lambda^2}{E + 2F\lambda + G\lambda^2} \]

As \(\lambda \) changes direction in the surface, \(\kappa_n \) will achieve a maximum and a minimum value unless \(L: M: N = E: F: G \), in that case \(\kappa_n \) is independent of \(\lambda \) (such locations are called umbilic points)

Setting \(\frac{d\kappa_n}{d\lambda} = 0 \), the principal directions \(\lambda \) and the corresponding principal curvatures \(k \) are governed by
\[(FN - GM)\lambda^2 + (EN - GL)\lambda + (EM - FL) = 0 \]
and
\[(EG - F^2)k^2 - (LG + NE - 2FM)k - (LN - M^2) = 0 \]
The solutions satisfy
\[E + F(\lambda_1 + \lambda_2) + G\lambda_1\lambda_2 = 0 \]
\[\frac{1}{2}(k_1 + k_2) = \frac{LG - 2FM + NE}{2(EG - F^2)} \]
\[k_1k_2 = \frac{LN - M^2}{EG - F^2} = \frac{\det(D)}{\det(B)} \]

\[K = k_1k_2 \] is called the Gaussian Curvature.

\[H = \frac{1}{2}(k_1 + k_2) \] is the mean Curvature (Germain Curvature).

If the two directions \(\lambda_1, \lambda_2 \) correspond to
\[d\vec{r}_1 = d\vec{r}(\lambda_1) = \vec{r}_u du_1 + \vec{r}_v dv_1 \]
\[d\vec{r}_2 = d\vec{r}(\lambda_2) = \vec{r}_u du_2 + \vec{r}_v dv_2 \]

then
\[\dot{\vec{r}}_1 \cdot \dot{\vec{r}}_2 = E \frac{du_1}{dt} \frac{du_2}{dt} + F \left(\frac{du_1}{dt} \frac{dv_2}{dt} + \frac{du_2}{dt} \frac{dv_1}{dt} \right) + G \frac{dv_1}{dt} \frac{dv_2}{dt} = 0 \]

Therefore the two principal directions are orthogonal.

Some geometrical meaning of the curvatures are the following.

1) A surface is called minimal if \(H = 0 \) everywhere. A minimal surface with boundary \(l \) has the smallest surface area among all surfaces with boundary \(l \).

2) If the principal directions are taken as the parametric curves, then \(F \equiv 0 \equiv M \) and

\[k_1 = \frac{L}{E}, \quad k_2 = \frac{N}{G} \]

curvature in any other direction \(\lambda \) is then given by
\[K(\lambda) = \frac{L + N\lambda^2}{E + G\lambda^2} = k_1 \frac{E}{E + G\lambda^2} + k_2 \frac{G\lambda^2}{E + G\lambda^2} \]
\[= k_1 \cos^2 \psi + k_2 \sin^2 \psi \]

where \(\psi \) is the angle between \(\vec{r}_u \) and \(\dot{\vec{r}} = \vec{r}_u \dot{u} + \vec{r}_v \dot{v} \), \(\left(\lambda = \frac{\dot{\psi}}{\dot{u}} \right) \) which is known as the Euler's formula.

3) If \(K > 0 \) at a point \(P \) on the surface, then \(P \) is an elliptic point. As \(k_1, k_2 \) have the same sign, so all the surface is bending the same way in all directions.
4) If $K<0$ at a point P, then it is an hyperbolic point. Tangent directions at P can bend away or towards the tangent plane.

5) If $K=0$ then either
(a) One principal curvature only is zero. The point P is a parabolic point, and one of the principal direction is straight near P.
(b) Both principal curvature are zero. The point is a special type of umbilic point and is planar.
Note: Isolated planar points can exist on surfaces which is far from planar. E.g. the monkey saddle surface $z = x(x + \sqrt{3}y)(x - \sqrt{3}y)$ at $P(0,0,0)$

6) Consider a point P on the surface $z = \psi(x,y)$ By a change of coordinates, choose the origin at P, and x, y axes along the principal directions at P, also z-axis in the direction of the surface normal at P, then the surface has equation $z = f(x,y)$ local to $(0,0,0)$ with $f(0,0)=0$

$$\frac{\partial f(0,0)}{\partial x} = \frac{\partial f(0,0)}{\partial y} = 0 \quad \text{(} \because \text{x-y is the tangent plane)}$$

and

$$z = f(x, y) = \frac{1}{2} \left\{ \frac{\partial^2 f(0,0)}{\partial x^2} x^2 + 2 \frac{\partial^2 f(0,0)}{\partial x \partial y} xy + \frac{\partial^2 f(0,0)}{\partial y^2} y^2 \right\} + O(x^3, y^3)$$
Now, taking $\vec{r} = (x, y, f(x, y))$

$$\vec{r}_x = \left(1, 0, \frac{\partial f}{\partial x}\right), \quad \vec{r}_y = \left(0, 1, \frac{\partial f}{\partial y}\right)$$

At $P = (0,0,0)$, $\vec{r}_x (p) = (1,0,0)$, $\vec{r}_y (p) = (0,1,0)$ and $\vec{n} = (0,0,1)$

$$E = \vec{r}_x (p) \cdot \vec{r}_x (p) = 1, \quad F = \vec{r}_x (p) \cdot \vec{r}_y (p) = 0, \quad G = \vec{r}_y (p) \cdot \vec{r}_y (p) = 1$$

the principal directions are orthogonal. Also

$$\vec{r}_{xx} (p) = \left(0,0, \frac{\partial^2 f}{\partial x^2}\right)_p, \quad \vec{r}_{xy} (p) = \left(0,0, \frac{\partial^2 f}{\partial x \partial y}\right)_p, \quad \vec{r}_{yy} (p) = \left(0,0, \frac{\partial^2 f}{\partial y^2}\right)_p$$

Hence

$$L = \vec{n} \cdot \vec{r}_{xx} (p) = \frac{\partial^2 f(0,0)}{\partial x^2}$$

$$M = \vec{n} \cdot \vec{r}_{xy} (p) = \frac{\partial^2 f(0,0)}{\partial x \partial y}$$

$$N = \vec{n} \cdot \vec{r}_{yy} (p) = \frac{\partial^2 f(0,0)}{\partial y^2}$$

$$\therefore z = \frac{1}{2} \left\{ Lx^2 + 2Mxy + Ny^2 \right\} + O(x^3, y^3)$$

$$= \frac{1}{2} \left\{ k_1 x^2 + k_2 y^2 \right\} + O(x^3, y^3)$$

These conics justify the terminology used. The simplest surface on which all three cases of Gaussian curvature occur is the torus.

$$K = \begin{cases} > & \text{if } K > 0 \\ < & \text{if } K < 0 \end{cases}$$

5.4 Special cases

5.4.1 Developable surfaces

Consider a surface in \mathbb{R}^3 which is constructed by a moving straight line, this so called ruled surface has the form

$$\vec{r}(u,v) = \vec{r}_0 (u) + v \vec{a}(u)$$
where \(\vec{r}_0(u) \) is the position vector of a point on a given line, \(\vec{a}(u) \) is the direction of the moving line (generators)

or if straight lines are used to join two given curves \(\vec{r}_0(u), \vec{r}_1(u) \) then

\[
\vec{r}(u, v) = (1 - v)\vec{r}_0(u) + v\vec{r}_1(u)
\]

Examples are cylinders and cones.

Now we look for conditions so that a ruled surface can be unrolled into a flat plane without distortion, (i.e. distances are preserved). If a ruled surface is developable, then all the generators eventually lie on a plane, therefore they are either parallel or intersect one another.

Now the intersection of two generators \(\vec{a} \) and \(\vec{a} + \hat{a} du \) is governed by

\[
\left(\vec{r}_0 + \dot{r} du - \vec{r}_0 \right) \left[\vec{a} \times (\vec{a} + \hat{a} du) \right] = \dot{r}_0 \cdot (\vec{a} \times \hat{a}) = 0
\]
In case all the generators are parallel, the above condition is also satisfied. Therefore it is the condition for a ruled surface becomes developable. As

\[\vec{r}_u = \dot{\vec{r}}_0 + v\hat{a}, \quad \vec{r}_v = \vec{a}, \quad \hat{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|} \]

\[\vec{r}_{uu} = \ddot{\vec{r}}_0 + v\ddot{a}, \quad \vec{r}_{uv} = \ddot{\vec{a}}, \quad \vec{r}_{vv} = 0 \]

therefore, \[N = \hat{n} \cdot \vec{r}_{vv} = 0 \]

\[M = \hat{n} \cdot \vec{r}_{uv} = \hat{n} \cdot \vec{a} = \frac{1}{|\vec{r}_u \times \vec{r}_v|} (\dot{\vec{r}}_0 + v\hat{a}) \times \vec{a} \cdot \hat{a} = 0 \]

\[\therefore K = \frac{\det(D)}{\det(B)} = \frac{LN - M^2}{\det(B)} = 0 \quad \text{for developable surfaces.} \]

In case the ruled surface is governed by two curves \(\vec{r}_0(u), \vec{r}_1(u) \), the condition becomes

\((\vec{r}_1 - \vec{r}_0) \cdot (\dot{\vec{r}}_0 \times \dot{\vec{r}}_1) = 0 \), this fact is used in the tangent plane method of generating developable surface passing through two curves.
5.4.2 Envelope of space curves

Regarding \(\vec{r} = \vec{r}(u, v) \) as a family of curves \(\vec{r} = \vec{r}_v(u) \) depending on a parameter \(v \). There may exist a curve \(\vec{r} = \vec{r}_e(v) \) which is tangential to every curve \(\vec{r}_v(u) \) at the parametric value \(v \). Such a curve, if it exists, is called the envelope of the family of curves.

In terms of the original parameters \(\vec{r}(u, v) \) it implies \(\vec{r}_u \) is parallel to \(\vec{r}_v \) and the surface normal is not defined at these points:

\[
\vec{r}_u \times \vec{r}_v = 0
\]

In case of the developable surface, the generators will have an envelope if they are not parallel. An envelope satisfies

\[
\vec{r}_u \times \vec{r}_v = (\vec{r}_0 + v\vec{a}) \times \vec{a} = 0
\]

so long as the generators are not parallel, \(\vec{a} \times \vec{a} \neq 0 \) hence the location of common tangent occurs at

\[
v = \left(\frac{\vec{a} \times \dot{\vec{a}}}{|\vec{a} \times \dot{\vec{a}}|^2} \right) \left(\vec{r}_0 \times \vec{a} \right)
\]

and the equation of the envelope of the generators is

\[
\vec{r}_e = \vec{r}_0(u) + \frac{(\vec{a} \times \dot{\vec{a}}) \cdot (\vec{r}_0 \times \vec{a})}{|\vec{a} \times \dot{\vec{a}}|^2} \vec{a}(u)
\]