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Abstract. We propose a quantitative framework for assessing the financial impact of any 
form of impact investing, including socially responsible investing; environmental, social, 
and governance (ESG) objectives; and other nonfinancial investment criteria. We derive 
conditions under which impact investing detracts from, improves on, or is neutral to the 
performance of traditional mean-variance optimal portfolios, which depends on whether 
the correlations between the impact factor and unobserved excess returns are negative, 
positive, or zero, respectively. Using Treynor–Black portfolios to maximize the risk- 
adjusted returns of impact portfolios, we derive an explicit and easily computable measure 
of the financial reward or cost of impact investing as compared with passive index bench-
marks. We illustrate our approach with applications to biotech venture philanthropy, a 
semiconductor research and development consortium, divesting from “sin” stocks, ESG 
investments, and “meme” stock rallies such as GameStop in 2021.
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1. Introduction
Impact investing—broadly defined as investments that 
consider not only financial objectives but also additional 
goals that support certain social priorities and agendas— 
has drawn an increasing amount of attention in recent 
years. This concept was first introduced through populist 
efforts to effect social change by encouraging institutional 
investors to divest from companies engaged in businesses 
viewed by critics as unethical, immoral, or otherwise 
objectionable (e.g., exploitation of child labor; tacit sup-
port of apartheid or religious persecution; or gambling, 
pornography, alcohol, tobacco, and firearms businesses 
(collectively known as “sin stocks”)). However, its scope 
has expanded significantly to include investment pro-
ducts that use environmental, social, and governance 
(ESG) criteria, “green” bonds, and private equity funds 
seeking social impact alongside financial returns.1

The growth in popularity and assets under manage-
ment of impact investing has also triggered a backlash. 
For example, on August 4, 2022, a letter signed by the 

attorneys general of 19 states was sent to BlackRock 
expressing concern over the asset manager’s ESG policies 
and how they may impact their holdings of fossil-fuel 
energy companies:2 “BlackRock’s actions on a variety of 
governance objectives may violate multiple state laws. 
Mr. McCombe’s letter asserts compliance with our fidu-
ciary laws because BlackRock has a private motivation 
that differs from its public commitments and statements. 
This is likely insufficient to satisfy state laws requiring a 
sole focus on financial return.” These are not minor con-
cerns given that the legal penalty for violating one’s fidu-
ciary duty involves personally making up any losses 
suffered by the client and restoring to the client any prof-
its made by the fiduciary’s service provision to said 
client.3

So, how can we reconcile impact investing with fidu-
ciary duty? The answer lies in developing a framework 
in which the financial impact of impact investing can be 
measured and disclosed, which is the subject of this 
article.

1 
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Conventional wisdom typically views impact invest-
ing as a standard portfolio selection problem with addi-
tional constraints related to the degree of social impact 
of the underlying securities, thereby implying a nonsu-
perior risk/reward profile compared with the uncon-
strained case. Given that the constrained portfolio 
contains a proper subset of securities of the uncon-
strained version, mathematical logic suggests that the 
constrained optimum is, at best, equal to the uncon-
strained optimum or more likely, inferior.

However, the nonsuperiority of constrained optima 
relies on a key assumption that is almost never explicitly 
stated; the constraint is assumed to be statistically inde-
pendent of the securities’ returns. In some cases, such an 
assumption is warranted; imagine constructing a subset 
of securities with Committee on Uniform Security Iden-
tification Procedures (CUSIP) identifiers that contain 
prime numbers. Clearly, such a constraint has no rela-
tion to the returns of any security; hence, imposing such 
a constraint can only reduce the risk-adjusted return of 
the optimized portfolio.

What if the constraint is not independent of the returns? 
For example, consider the constraint “invest only in those 
companies for which their stock prices will appreciate by 
more than 10% over the next 12 months.” Apart from the 
infeasibility of imposing such a condition, it should be 
obvious that this constraint would, in fact, increase the 
risk-adjusted return of the optimized portfolio. Therefore, 
the answer to the question of what is the impact of impact 
investing rests entirely on whether and how the impact 
criteria are related to the performance characteristics of 
the securities being considered.

In this article, we develop a general framework to 
quantify the financial impact of impact investing. We 
formalize impact investing as the sorting and selection 
of an investment universe of N securities based on an 
impact factor, Xi, for security i so that higher values of Xi 
correspond to greater impact (e.g., lower carbon emis-
sions, greater sustainability, higher ESG score, etc.). As a 
result, other things equal, impact investors are assumed 
to prefer securities with higher values of Xi. This impact 
factor defines a rank ordering for all securities in the uni-
verse from which an impact portfolio can be constructed 
(i.e., the top decile of ESG-ranked securities or the bot-
tom decile of carbon emissions-ranked securities). 
Therefore, the impact on investment performance is 
determined by the joint distribution of the vector X ≡
[X1 X2 ⋯ XN]

T of impact measures with the invest-
ment performance of individual securities.

To formalize this idea, we first propose a general lin-
ear multifactor model for asset returns and define excess 
returns or “alphas” as nonzero intercepts that we model 
as mean-zero random variables. This framework allows 
for the possibility of superior investment performance 
for individual securities but also includes the conven-
tional case of equilibrium or no-arbitrage pricing if we 

set the variance of the alphas to zero. In fact, the implica-
tions from our model are broadly applicable to an 
equilibrium asset-pricing setup where “alpha” is reinter-
preted as omitted factors of which investors are either 
unaware or unable to access as easily as professional 
portfolio managers. Such an agnostic approach to invest-
ment performance allows us to determine conditions 
under which impact investing does and does not change 
the risk/reward profile of a given investment product.

In particular, we derive—both in finite samples and 
asymptotically (as the number of securities increases 
without bound)—the distribution of individual alphas 
that have been ranked according to their impact factors 
X. It is well known that ranked random variables— 
known as order statistics—have different distributions 
than their unranked versions. However, for our pur-
poses, a more relevant strand of that literature focuses 
on induced order statistics, in which random variables are 
ranked not by their own values but by the values of 
other random variables (e.g., ranking the returns of a col-
lection of mutual funds not by their returns but by the 
funds’ market betas). We use properties of induced 
order statistics to derive the distribution of an impact 
portfolio’s alphas ranked by an arbitrary impact score X, 
allowing us to quantify the impact of impact investing.

Using this framework, we show that the expected 
alpha from the induced ordering is determined by three 
terms: the correlation between X and the individual 
securities’ alphas, the standard deviation of individual 
securities’ alphas, and a cross-sectionally standardized 
impact score that captures whether the impact factor of a 
security is above or below average. In addition, we pro-
vide an alternative characterization of the expected 
alpha from the induced ordering as a discounted version 
of the expected alpha from ordering securities based on 
alpha (i.e., via an all-knowing oracle that, in reality, is of 
course unattainable because alphas are unobservable). 
Much like the Sharpe–Lintner Capital Asset-Pricing 
Model (CAPM) (Sharpe 1964, Lintner 1965), which 
quantifies the expected return of individual securities 
through market beta,4 this simple but profound result 
highlights the mechanism through which an impact 
factor’s excess return is earned; it achieves a fraction of 
the maximum possible alpha with perfect knowledge, 
where the fraction is simply the correlation between X 
and the individual securities’ alphas.

Using this insight, we quantify the alphas of portfo-
lios formed based on the impact factor X—including 
common heuristics of creating portfolios from the top 
or bottom impact-factor quantiles—and then apply 
the Treynor and Black (1973) framework to derive the 
optimal weights when forming both long/short and 
long-only portfolios to maximize Sharpe ratio. We 
show that such impact portfolios are associated with 
“superefficient frontiers” as long as the impact factor, 
X, is positively correlated with the unobserved alphas 
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of the individual securities. We also provide an equi-
librium/no-arbitrage interpretation of our results in 
which excess returns arise from omitted factors that 
investors may not be aware of but to which impact 
portfolio managers have access. In this case, the excess 
returns are simply “excess” with respect to factors that 
investors observe and represent risk premia from spe-
cific impact factors.

The Treynor–Black portfolio allows us to construct a 
natural measure of the financial impact of impact invest-
ing; an impact factor has positive alpha when it is posi-
tively correlated with individual securities’ unobserved 
alphas. On the other hand, an impact factor can impose 
a cost—also quantifiable in our framework—when it is 
negatively correlated with alphas and investors divest 
of the bottom-ranked securities (which have positive 
alphas on average because of the negative correlation 
with X). This provides a possible explanation for the 
inconsistent and sometimes contradictory empirical 
findings on the effects of adopting impacting investing. 
The correlation between the impact factor and alpha is 
affected by different measures of impact,5 different mar-
ket conditions,6 and different asset-pricing models for 
alpha,7 all of which can influence the final estimate of 
the benefit or cost of impact investing.

To illustrate the practical relevance of our results, we 
apply our framework to five specific impact-investing 
contexts. The specific correlation—positive or negative— 
for each form of impact investing depends on the specific 
nature of the impact, the risks involved to achieve that 
impact, and its relationship with the underlying process 
of alpha generation.

The first example is biotech venture philanthropy 
(VP), a particular form of impact investing in biomedi-
cine where nonprofit and mission-driven organizations 
fund initiatives to advance their objectives and poten-
tially achieve returns that can be reinvested toward their 
mission. We take the case study by Kim and Lo (2019) 
about the Cystic Fibrosis (CF) Foundation to show that a 
significantly positive alpha can be achieved by advanc-
ing drug development for rare diseases, which illus-
trates the feasibility of “doing well by doing good.” In 
this case, the challenges associated with early-stage drug 
development programs from the financial perspective— 
low probabilities of success, long time horizons, and 
large capital requirements as highlighted by Fagnan et al. 
(2013)—are more than offset by a positive correlation, ρ.

The second application involves the research and 
development (R&D) consortium, another form of impact 
investing. We consider the example of Semiconductor 
Manufacturing Technology (“Sematech”)—a high- 
profile R&D consortium formed in 1987 and funded by 
the U.S. Government and 14 U.S. semiconductor firms— 
whose purpose was to solve common manufacturing 
problems by leveraging shared R&D resources. Using a 
simple difference-in-difference approach, we estimate 

that joining the consortium leads to an increased alpha in 
the stocks of member firms of around 10%, implying sig-
nificant returns from investments in the consortium. In 
this case, the R&D consortium reduces R&D duplication 
and increases profitability for member firms (Irwin and 
Klenow 1996a), leading to a positive correlation between 
impact and returns.

The third application involves measuring the cost of 
divesting from sin stocks (stocks of companies engaged 
in businesses considered by some to be socially undesir-
able but that are documented to have positive alphas), 
which can be explained by the Merton (1987) model of 
neglected stocks and segmented markets. Calibrating to 
Hong and Kacperczyk (2009) and Blitz and Fabozzi 
(2017) as examples, we estimate the cost of divestment 
ranging from 0.6% to 3.3% in forgone alpha per annum. 
This example illustrates the dependence of the magni-
tude of estimated alpha on the specific asset-pricing 
model used, a well-known issue with all performance 
attribution exercises.

Fourth, we apply our framework to several ESG 
empirical studies. Correlations between the specific ESG 
measures in these studies and the unobserved alphas of 
individual securities determine the final estimate of the 
benefit (or cost) of ESG investing. They range from 
�0.05% for bonds (Baker et al. 2022) to 2.65% for equities 
in certain market conditions (Bansal et al. 2022). This 
underscores the importance of asset class, impact mea-
sures, and specific market conditions in determining the 
alpha of impact investing as well as the need to rational-
ize the highly dynamic impact of ESG on asset prices 
beyond equilibrium models of ESG investing.

Finally, we apply our framework to explain the 
January 2021 price spike in GameStop Corp. (GME) and 
other “meme” stocks, where a decentralized short 
squeeze that exploited the short positions of institutional 
investors caused their prices to increase sharply before 
crashing. Classifying such phenomena as impact invest-
ing may seem strange, but they share similarities with 
the other examples in how their returns are generated 
mechanically, and perhaps, a separate category called 
“price-impact investing” would be more appropriate. 
Our framework helps to quantify the financial impact 
of price-impact investing. Measuring the magnitude of 
such investments and understanding their financial 
implications can better inform regulators and policy 
makers as to the scope and severity of this phenomenon 
so that they can devote the appropriate sources to 
addressing it.

Overall, these five examples highlight the importance 
of choosing a baseline asset-pricing model and forming 
impact variables based on economic, institutional, and 
market rationales in order to establish sound and robust 
relationships between impact and returns. Our model 
offers a unified framework that can be calibrated to a 
wide range of settings and provides academic rigor for 
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how to think about impact investing and quantify their 
financial consequences. Moreover, our framework 
provides a systematic and politically neutral approach 
for portfolio managers to disclose the financial conse-
quences of impact investing, thereby addressing any 
concerns that their clients are either unaware of or 
unwilling to bear the consequences of their managers’ 
impact criterion.

2. Literature Review
There is a growing literature theorizing the impact of 
SRI, ESG, and other nonfinancial objectives on asset pric-
ing. The Fama and French (2007) taste model shows that 
if investors prefer to invest in socially responsible com-
panies, the expected return on such companies will be 
lower. Pástor et al. (2021) provide a model for ESG 
investing where investors’ taste for green assets implies 
lower returns, and assets can be priced in a two-factor 
model that includes the ESG factor and the market port-
folio. Pedersen et al. (2021) derive an ESG-efficient fron-
tier and show that ESG may either yield benefits to 
expected returns because it provides information about 
firm fundamentals (as in our example, in which con-
straints contain information about returns) or incur costs 
because it affects investor preferences and constraints.8

Although these studies share some of the same impli-
cations as our framework, we add to this literature in 
several novel ways. The equilibrium frameworks of 
Fama and French (2007), Pástor et al. (2021), and Peder-
sen et al. (2021) highlight that the expected return of ESG 
investing depends on the mix of investors and prefer-
ences in the market. However, impact investing is still 
an evolving concept, and their expected returns are 
dynamic and context dependent. It is possible that mar-
ket prices are still adjusting to reach a new equilibrium 
that reflects these considerations (Cornell and Damo-
daran 2020).9 Our unified econometric framework pro-
vides an explicit method to quantify the excess returns 
of any form of impact investment—including, but not 
limited to, the equilibrium setting—during different 
stages of this adaptive process. These results are, in turn, 
consistent with the equilibrium-based models when the 
correlation between X and security returns reflects the 
particular market condition and shift in preferences over 
time. From the adaptive markets (Lo 2004, 2017) per-
spective, this correlation could reinforce itself as the 
amount of assets under management for a given impact 
factor increases over time and eventually stabilizes as 
the size of the new sector reaches a steady state.

Our framework also differs from existing models in 
that we allow for the possibility of nonzero alphas or 
omitted factors in the equilibrium/no-arbitrage inter-
pretation, which is particularly relevant for the highly 
adaptive and dynamic ESG investment industry. An 
important insight from Pedersen et al. (2021) is that 

ESG’s information about firm fundamentals can yield 
benefits to its returns, whereas screening constraints will 
incur costs to ESG investing.10 Our model shows that 
when securities have nonzero alphas that are otherwise 
inaccessible to investors, ESG investing can derive finan-
cial benefit from constraints too because of the informa-
tion about returns implicit in these constraints. This 
effect is formalized statistically by the correlation 
between the impact factor, X, and returns. As a result, 
we are able to explicitly construct the optimal supereffi-
cient portfolio from any X and explicitly quantify its 
financial impact.

The empirical literatures on measuring the returns of 
SRI and ESG are not always consistent with each other. 
These inconsistencies raise the question of what the real 
financial impact of impact investing is, which is pre-
cisely the motivation for our current contribution. 
Our framework explains not only how to measure the 
financial impact of impact investing but also why there 
is such a wide range of empirical estimates for the 
expected returns of SRI and ESG investing. It stems from 
the wide range of impact definitions, date ranges, asset 
classes, and asset-pricing models for alpha, each of 
which leads to a different specification that may have a 
potentially different correlation between the impact fac-
tor and asset returns.

More generally, our framework is applicable to port-
folios constructed on the basis of any characteristic, 
including traditional factors such as value, size, momen-
tum, and other variables. As such, our work is related to 
several strands of the asset-pricing and econometrics lit-
erature. These include a large literature devoted to iden-
tifying asset-pricing factors11 and a vast econometrics 
literature focused on factor models.12 In particular, we 
make use of the same statistical results on induced order 
statistics first applied to financial data by Lo and MacK-
inlay (1990), albeit in a very different context.

3. The Framework
We consider a universe of N securities with returns Rit 
that satisfy the following multifactor model:

Rit�Rft�αi+βi1 (Λ1t�Rft)+⋯+βiK (ΛKt�Rft)+ɛit (1) 
such that E[ɛit |Λkt]�0, k�1,: : : ,K, (2) 

where Λkt is the kth factor return; k � 1, : : : , K. Here Rft is 
the risk-free rate, the excess return and factor betas are 
represented by αi and βik, respectively, and ɛit is the idio-
syncratic return. Because we consider only a static 
model in this article, we omit the subscript t throughout 
for notational simplicity.

Under suitable restrictions on the parameters {αi,βik}

and the definitions of the factor returns {Λk}, the linear 
multifactor model (1) is consistent with a number of 
asset-pricing models, such as the Sharpe–Lintner CAPM 
(Sharpe 1964, Lintner 1965), Merton’s intertemporal 
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CAPM (Merton 1973), Ross’s arbitrage pricing theory 
(APT) (Ross 1976), and the Fama–French multifactor 
models (Fama and French 1993, 2015). In particular, all 
of these asset-pricing models imply that αi � 0.

However, to measure the impact of impact investing, 
we take no position as to whether any particular asset- 
pricing model holds. Nor do we make any assumption 
on investor belief structures. Instead, we derive the 
implications of impact investing on the statistical prop-
erties of impact-portfolio returns without constraining 
excess returns to be zero. These properties lead to a 
framework that is flexible enough to interpret impact 
from multiple perspectives.

3.1. The No-Impact Baseline Case
We begin by stating the near-trivial result that arbitrary 
portfolios formed according to criteria unrelated to the 
parameters of the return-generating processes {Rit} are 
necessarily less than or equal to the investment perfor-
mance of the mean-variance optimal portfolio.13

Proposition 1. If asset returns satisfy (1) and (2) and 
α1 �⋯� αN � 0, then any arbitrary subset S ⊆ {1, : : : , N}
formed independently of the joint distribution of returns, 
{Rit}, satisfies

max
{ω1, : : : , ωN |

PN
i�1ωi�1 }

E[U(W)]

≥ max
{ωc

1, : : : , ωc
N |
P

i∈Sω
c
i�1 and ωc

i�0 for i∉S }
E[U(Wc)]

(3) 

for any nondecreasing concave utility function U(·), where

W ≡
XN

i�1
ωiRi and Wc ≡

X

i∈S
ωc

i Ri: (4) 

In addition, under certain fairly realistic conditions given 
in the online appendix, the loss in utility by restricting to 
the subset S is generally small as long as the number of 
securities excluded by S is small relative to the total num-
ber of securities, N.

This proposition confirms the common critique that 
skeptics often level against impact investing. If the con-
straint S has nothing to do with the characteristics of the 
underlying asset returns, {Ri}, then imposing such con-
straints can only reduce investment performance or at 
best, achieve the unconstrained optimum. In particular, 
the independence of S and {Ri} implies that the excess 
returns, {αi}, are indistinguishable from {ɛi}, in which 
case we are essentially assuming zero excess returns, so 
there is no possibility of generating any excess perfor-
mance.14 In addition, although impact investing in this 
special case cannot improve returns, the underperfor-
mance is likely to be small (assuming no transactions 
costs or fees, of course).

However, suppose we allow for nonzero alphas that are 
unobserved to investors; in other words, the unconstrained 

optimization problem in (3) does not have the ability to 
find securities with positive alphas.15 If we relax the con-
dition that S is independent of the joint distribution of 
{Ri}, then Proposition 1 clearly does not hold. For exam-
ple, suppose that

S � {i : αi > 0, i � 1, : : : , N}: (5) 

Clearly, in this case, it is possible for the risk-adjusted 
returns of the S portfolio to beat those of the uncon-
strained portfolio given that the subset contains all 
positive-alpha securities and the complement contains 
the reverse. This conclusion may seem counterintuitive 
because the constrained portfolio is, by definition, a fea-
sible solution in the unconstrained case. So, how can 
imposing the constraint ever improve performance? The 
answer lies in the fact that in the unconstrained case, 
information about the {αi} is not available; the constraint 
contains private information16 that can dramatically 
improve performance. Therefore, the constrained solu-
tion is actually not feasible in the unconstrained case.

So, the fundamental question of whether an impact 
investment has positive (or negative) financial impact 
reduces to the information content in the constraint (i.e., 
the relation between the constraint and the joint distribu-
tion of asset returns). No relation implies no informa-
tion; hence, there is no impact. However, the presence 
of even the slightest amount of dependence between 
the constraint and returns implies the possibility of 
some degree of impact. We can quantify this degree by 
being explicit about the statistical relation between asset 
returns and the impact factor.

Of course, this counterexample assumes the existence 
of mispriced or positive-alpha securities (5), but an 
equally valid equilibrium/no-arbitrage interpretation is 
that the αi’s are omitted factors from the investor’s 
linear-factor benchmark. Either investors are unaware of 
these factors, or they do not have the ability to access 
them (e.g., exotic betas from private equity, distressed 
debt, event-driven opportunities, etc.). Under this inter-
pretation, impact investing can be viewed as providing 
investors with alternative risk premia.

Our framework accommodates both interpretations— 
as we describe—and offers a systematic and quantitative 
approach to measuring impact in either case.

3.2. Impact Factors and Induced Order Statistics
We assume that the excess return of the ith security, αi, is 
not observable, whereas the impact factor, Xi, for that 
security is. Contrary to the usual asset-pricing setup in 
which the αi’s are assumed to be fixed constants (and in 
equilibrium or under no-arbitrage conditions, identically 
equal to zero), we assume that they are random variables.

Impact investors select a portfolio based on the 
impact factor, X, and the excess return of their portfolio 
is determined by the corresponding vector of excess 
returns of the individual securities in that portfolio, 
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a ≡ [α1 ⋯ αN]
T. Specifically, suppose an investor 

ranks N securities according to X. Let us reorder the 
bivariate vector (Xi,αi)

T, i � 1, 2, : : : , N, according to 
the magnitudes of their first components:

X1:N
α[1:N]

� �

, X2:N
α[2:N]

� �

, ⋯ , XN:N
α[N:N]

� �

, (6) 

where X1:N < X2:N < XN:N and the notation Xi:N denotes 
the ith order statistic from a total of N random variables. 
The notation α[i:N] represents the ith induced order statis-
tic,17 where the order is induced by another variable X.

Because a is defined with respect to the multifactor 
model (1), by studying the interaction between X and a, 
our framework allows for the existence of any set of pre-
defined asset-pricing factors and focuses on the incre-
mental role of X in determining asset returns.

3.3. Defining an Impact Portfolio
Impact investing essentially corresponds to the selection 
of securities based on the impact factor, X. For example, 
an investor may choose to invest in the top n0 securities 
ranked by X or form portfolios long the top decile and 
short the bottom decile. In general, we define an impact 
portfolio as any portfolio S(X) formed as a function of the 
impact factor, X. With portfolio weights {ωi, i ∈ S}, the 
return of the impact portfolio is given by

RS �
X

i∈S
ωiRi: (7) 

To characterize RS , we therefore need to quantify the 
distribution of the excess returns—or the induced order 
statistic α[i:N]—given certain assumptions on the joint 
distribution of (X, a).

Note that X can represent a variety of characteristics 
related to metrics for climate change, sustainable farm-
ing, tobacco usage, gambling, biomedical R&D, and any 
other SRI or ESG considerations. Together with the 
generality of our multifactor asset-pricing model (1), this 
corresponds to a wide range of impact-investing contexts. 
Section 6 provides five concrete examples, highlighting 
that the specific economic, institutional, and market vari-
ables that matter in each case will depend on the specific 
context and time period in consideration (see discussions 
in Section 7).

In fact, our framework applies more generally to any 
characteristics of a security including, for example, the 
traditional value, size, and momentum factors as well as 
denizens of the “factor zoo” described in the recent 
literature. For the purposes of this study, we focus on 
the impact-investing interpretation, but we will discuss 
broader interpretations in Section 8.

4. Characterizing Excess Returns
To assess the impact of impact portfolios, we require the 
distribution of α[i:N], which can be derived explicitly 
under the following assumption.

Assumption 1. (Xi,αi)
T, i � 1, 2, : : : , N, are independently 

and identically distributed bivariate normal random vectors 
with mean (µx ,µα)

T, variance (σ2
x,σ2
α)

T, and correlation 
ρ ∈ (�1, 1).

The assumption that αi is random is somewhat uncon-
ventional, so a few clarifying remarks are in order. This 
assumption was first used in Lo and MacKinlay (1990) 
to represent cross-sectional estimation errors of inter-
cepts from CAPM regressions. However, in our current 
context, we interpret the randomness in αi as a measure 
of uncertainty as to the degree of mispricings of securi-
ties in our investment universe.18 This uncertainty can 
be interpreted from a Bayesian perspective as the degree 
of conviction that mispricings exist in the cross-section. 
Under this interpretation, we will make the auxiliary 
assumption—without loss of much generality—that all 
αi’s are mean 0 (µα � 0). This corresponds to centering 
the Bayesian prior on zero average deviations from 
equilibrium or no-arbitrage pricing in our investment 
universe, a reasonable and more realistic first approxi-
mation that still allows for mispricings, which of course, 
motivates a significant portion of the asset management 
industry’s products and services.19 Moreover, we can 
calibrate the degree of mispricings in our model through 
σ2
α; smaller values correspond to greater efficiency, and 

larger values correspond to lower efficiency and more 
active management opportunities.

However, our framework can also be interpreted 
from an equilibrium/no-arbitrage perspective, where 
nonzero αi’s are because of the presence of omitted fac-
tors that investors are either unaware of or unable to 
access directly. Under this interpretation, we will see 
that the randomness in αi is because of cross-sectional 
variability in security i’s omitted-factor betas. In this 
case, however, it is possible for µα�to be nonzero to 
reflect the risk premia of the omitted factors.

We deliberately make the assumption of joint normal-
ity for (Xi,αi)

T so as to capture the interaction between X 
and a while still being able to derive explicit and easily 
interpretable results for induced excess returns. This 
assumption can be relaxed considerably to allow for 
cross-sectional dependence (see Section 4.3) and general 
marginal distributions and dependent structures for 
(Xi,αi)

T (see Lo et al. 2022b) at the expense of simplicity.
Regardless of the interpretation of αi, the theory of 

induced order statistics allows us to completely charac-
terize its statistical properties. We first present its finite- 
sample distribution followed by asymptotic results 
when the number of securities, N, increases without 
bound.

4.1. Finite-Sample Distribution
We first observe that the mean and standard deviation 
of the impact factor, X, do not actually matter for the dis-
tribution of α[i:N]’s because it is only the relative order of 
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Xi’s that determines the order of α[i:N]’s. Therefore, we 
assume without loss of generality that µx � 0 and σx � 1 
so that X is a standard normal random vector. Then, the 
following result characterizes the finite-sample distribu-
tions of the induced order statistics {α[i:N]}.

Proposition 2. Under Assumption 1, the expected value of 
the ith induced order statistic α[i:N], i � 1, 2, : : : , N is given 
by

µi ≡ E[α[i:N]] � ρσαE[Xi:N]: (8) 

The variance of the ith induced order statistic α[i:N], i �
1, 2, : : : , N is given by

σ2
i ≡ Var(α[i:N]) � σ2

α(1� ρ2 + ρ2Var(Xi:N)): (9) 

The covariance of the ith and jth induced order statistics, 
α[i:N] and α[j:N], for i ≠ j is given by

σij ≡ Cov(α[i:N],α[j:N]) � σ2
αρ

2Cov(Xi:N, Xj:N): (10) 

Proposition 2 gives us the first two moments of the 
induced order statistics, α[i:N]’s. In particular, the expected 
alpha in (8) is determined by three terms: the correlation 
(ρ) between X and individual securities’ alphas, the 
standard deviation of individual alphas (σα), and a cross- 
sectionally standardized impact score (E[Xi:N]). The corre-
lation ρ�here plays a critical role in determining the 
expected alpha of both individual securities and impact 
portfolios (see Section 5). This resembles the CAPM’s 
market beta—which quantifies security returns attribut-
able to systematic market risk—because the market beta is 
simply the correlation between security returns and mar-
ket returns when they are both standardized with unit 
variances.

If we view the impact factor X as a signal for predict-
ing asset returns, the expected alpha in (8) is closely 
related to the results by Grinold (1994),20 who provides 
a simple decomposition of alpha into the product of 
three terms: the information coefficient (the correlation ρ�
in our notation), the volatility of residual returns, and a 
standardized score that measures the strength of the sig-
nal for each asset. In our context, it is the volatility of the 
unobserved alpha (not the volatility of residual returns) 
that determines the expected alpha of each asset. In 
addition, because we only use the rank information in X, 
the standardized score can be quantified explicitly by 
E[Xi:N]. Finally, our results also provide the variance 
and covariances of individual alphas, which are crucial 
for quantifying the uncertainty of these alphas in 
practice.

We note that all three quantities in (8)–(10) depend on 
the distribution of the order statistics of standard normal 
random variables. In fact, the terms E[Xi:N] in (8), 
Var(Xi:N) in (9), and Cov(Xi:N, Xj:N) in (10) can be explic-
itly evaluated by numerical integration over the density 
function of Xi:N (see David and Nagaraja 2004, section 
3.1 for example).

On the other hand, we can also explicitly evaluate the 
quantities in (8)–(10) based on the following approxima-
tion results.

Proposition 3. Let pi ≡
i

N+1 denote the relative position of 
the order i in the population of N securities. The expected 
value and variance of the ith order statistic of the standard 
normal random variable, Xi:N, can be approximated up to 
order (N+ 2)�2, when N increases without bound, by

E[Xi:N] ≈ Φ
�1(pi) +

pi(1� pi)

2(N + 2) Q′′i

+
pi(1� pi)

(N+ 2)2
1
3 (1� 2pi)Q′′′i +

1
8 pi(1� pi)Q′′′′i

� �

(11) 

Var(Xi:N) ≈
pi(1� pi)

N + 2 Q′i
2 +

pi(1� pi)

(N + 2)2

2(1� 2pi)Q′i Q
′′
i + pi(1� pi) Q′i Q

′′′
i +

1
2 Q′′i

2
� �� �

(12) 

for i � 1, 2, : : :N. Additionally, their covariances can be 
approximated up to order (N+ 2)�2, when N increases with-
out bound, by

Cov(Xi:N, Xj:N) ≈
pi(1� pj)

N + 2 Q′i Q
′
j +

pi(1� pj)

(N + 2)2
�

(1� 2pi)Q′′i Q′j + (1� 2pj)Q′i Q
′′
j

+
1
2 pi(1� pi)Q′′′i Q′j +

1
2 pj(1� pj)Q′i Q

′′′
j

+
1
2 pi(1� pj)Q′′i Q′′j

�

(13) 
for 1 ≤ i < j ≤ N. Here, Q′i , Q′′i , Q′′′i , and Q′′′′i are the first 
four derivatives of Φ�1(pi):

Q′i � Φ
�1(pi)

� �′
�

1
φ Φ�1(pi)
� � (14) 

Q′′i � Φ
�1(pi)

� �′′
�
Φ�1(pi)

φ Φ�1(pi)
� �2 (15) 

Q′′′i � Φ
�1(pi)

� �′′′
�

1+ 2 Φ�1(pi)
� �2

φ Φ�1(pi)
� �3 (16) 

Q′′′′i � Φ
�1(pi)

� �′′′′
�
Φ�1(pi)(7+ 6 Φ�1(pi)

� �2
)

φ Φ�1(pi)
� �4 : (17) 

Φ�and φ�are the cumulative distribution function (CDF) 
and density function of the standard normal distribution, 
respectively.

Although the approximations in Proposition 3 may 
seem daunting, their first-order terms are fairly intuitive. 
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The first term in (11) is Φ�1(pi), which simply approxi-
mates E[Xi:N] by the inverse CDF applied to the relative 
rank, pi ≡

i
N+1, of the ith order statistic, which is a well- 

known first-order approximation by itself.
Figure 1 displays the mean, variance, and covariances 

of the induced order statistic, α[i:N], for a collection of 
N � 50 securities as given in Proposition 2 using the 
approximations in Proposition 3. When the correlation, 
ρ, between a and X is positive, the expected value of the 
induced order statistic increases as the order i increases 
(see Figure 1(a)). The dispersion of the mean is larger 
when the correlation, ρ, or the dispersion of the unknown 
a, σα, is larger.

In addition, Figure 1(b) shows that the variances, 
Var(Xi:N), stay relatively constant across the ordered 
securities i and are primarily determined by ρ�and σα. In 
fact, we will see in Online Appendix A.1 that as the num-
ber of securities increases without bound, the variance 
converges to a constant across all i.

Finally, the covariances, Cov(Xi:N, Xj:N), are very close 
to zero except when i and j are close to the two extremes. 
We show in Online Appendix A.1 that as N increases 
without bound, the covariances approach zero, imply-
ing that induced order statistics are mutually indepen-
dent in the limit.

Online Appendix A.1 provides the asymptotic mean, 
variance, and covariances of induced order statistics that 
generalize Proposition 2.

4.2. Comparison with Conventional 
Order Statistics

To develop further intuition for the effect of induced 
ordering, we compare the distributions of induced order 
statistics with their conventional order statistics counter-
parts, αi:N. Note that this comparison is merely meant to 
be an illustrative thought experiment; a is unobservable 
in practice. Hence, such rankings are not feasible in prac-
tice. Nonetheless, this provides a useful comparison 

Figure 1. (Color online) Mean, Variance, and Covariances of the Induced Order Statistic, α[i:N]

Notes. The total number of securities is set to 50 for illustrative purposes. In panel (c), we set ρ � 20% and σα � 5%. (a) Expected value. (b) Vari-
ance. (c) Covariances.
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with what can be achieved by ordering based on the 
impact factor, X.

Proposition 4. Under Assumption 1, the first two moments 
of the induced order statistic, α[i:N], are related to the order sta-
tistic, αi:N, by the following identities:

µi ≡ E[α[i:N]] � ρE[αi:N] (18) 
σ2

i � σ
2
α ≡ Var(α[i:N])� σ2

α � ρ
2[Var(αi:N)� σ

2
α] (19) 

σij ≡ Cov(α[i:N],α[j:N]) � ρ2Cov(αi:N,αj:N): (20) 

Proposition 4 tells us that the mean, variance, and covar-
iances of the induced order statistics, α[i:N], are essentially 
a discounted version of the corresponding moments of 
the conventional order statistics, αi:N. The discount fac-
tor, ρ, is precisely the correlation between X and a.

To visualize this effect, Figure 2 contains a comparison 
of the expected excess returns of the induced order sta-
tistic, α[i:N], and the order statistic, αi:N. As the correla-
tion, ρ, increases to one, the expected excess return 
approaches the hypothetical value of sorting based on a.

This result highlights the role that induced ordering 
plays in distinguishing securities with positive alpha 
from those with negative alpha. If alpha is fully ob-
served by a hypothetical oracle, she can simply pick 
securities with the highest alphas to construct impact 
portfolios. In reality, the correlation between the sorting 
variable (in our case, the impact factor) and the target 
variable (in our case, the unobserved a) determines how 
much of the mean, variance, and covariances from a 
hypothetical sorting based on a can actually be achieved 
via the induced ordering of X.

4.3. Interpreting Excess Return as 
Omitted Factors

Having completely characterized the stochastic proper-
ties of the excess returns a of securities ranked according 
to an arbitrary impact factor X, we now provide an 
explicit derivation of the equilibrium/no-arbitrage 

interpretation of a as risk premia associated with omit-
ted factors.

Let security returns follow the K-factor asset-pricing 
model as specified in (1) and (2), but now assume there 
are no mispricings. However, suppose that investors 
only account for the first factor Λ1, without loss of gener-
ality, and are unaware of the remaining K� 1 factors 
Λ2, : : : ,ΛK. We define λik ≡ βik(Λk�Rf ) to be factor k’s 
contribution to security i’s return, for i � 1, : : : , N and 
k � 2, : : : , K, and λi ≡

PK
k�2 λik to be the total net contri-

bution of all the omitted factors to security i’s return. 
Given that investors are unaware of factors 2, : : : , K, the 
total excess expected returns for the securities in our uni-
verse appear to be alphas to such investors:

αi ≡ E[λi] �
XK

k�2
βik(E[Λk]�Rf ): (21) 

To characterize the distribution of λi after ranking secu-
rities based on the impact factor X, we make the follow-
ing assumption.

Assumption 2. (Xi,λi)
T, i � 1, 2, : : : , N, are bivariate nor-

mal random vectors with their marginal distributions and 
paired correlations defined by

µx ≡E[Xi], µλ ≡E[λi], σ2
x ≡Var(Xi), σ2

λ ≡Var(λi), and
ρx,λ ≡Corr(Xi,λi): (22) 

In addition, for i ≠ j, the correlations across different securi-
ties are defined by

ρx ≡ Corr(Xi, Xj), ρλ ≡ Corr(λi,λj), and
ρ̃x,λ ≡ Corr(Xi,λj): (23) 

Under this assumption, the cross-sectional randomness 
of λi can be interpreted as variations coming from both 
the factor values and the distribution of factor betas 
across companies in our universe. (Xi,λi)

T can be corre-
lated across securities, and their correlation structure is 
described by the four parameters ρx,λ, ρ̃x,λ, ρx, and ρλ.

We can characterize the first two moments of λ[i:N]. 
Recall that the notation λ[i:N] denotes the ith induced 
order statistic where the order is induced by the impact 
factor X. We again assume without loss of generality 
that µx � 0 and σx � 1 so that X is a standard normal ran-
dom vector. However, we allow for a nonzero risk pre-
mium µλ.

Proposition 5. Under Assumption 2, define

ρadj ≡
ρx,λ � ρ̃x,λ

1� ρx
(24) 

to be an adjusted correlation. The expected value of the ith 
induced order statistic λ[i:N], i � 1, 2, : : : , N is given by

E[λ[i:N]]�µλ � ρadjσλE[Xi:N]: (25) 

Figure 2. (Color online) Comparison Between the Expected 
Value of the Induced Order Statistic, α[i:N], and the Order Sta-
tistic, αi:N, with N � 50 and σα � 5% 
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The variance of the ith induced order statistic λ[i:N], i �
1, 2, : : : , N is given by

Var(λ[i:N]) � σ2
λ(1� ρ2

adj + ρ
2
adjVar(Xi:N)): (26) 

The covariance of the ith and jth induced order statistics, 
λ[i:N] and λ[j:N], for i ≠ j is given by

Cov(λ[i:N],λ[j:N]) � σ2
λρ

2
adjCov(Xi:N, Xj:N) + (ρλ � ρxρ

2
adj):

(27) 

Proposition 5 characterizes the return from omitted fac-
tors for the ith security ranked by X. This result high-
lights an important implication when estimating the 
financial impact of impact investing. Given any defini-
tion of impact, X, if the portfolio selected based on X pro-
duces a nonzero excess return, X must be correlated 
with some factors not previously accounted for in the 
asset-pricing framework. This may imply the existence 
of a new factor that corresponds to the very definition of 
X, such as an “ESG factor” or a “carbon factor” (Bolton 
and Kacperczyk 2021).

On the other hand, Proposition 5 also implies that 
when forming a portfolio, if one uses selection criteria 
that appear independent of return characteristics such 
as market betas and factor loadings, it may still be 
correlated with omitted factor risk premiums, in which 
case the selection criteria will produce nonzero excess 
returns. In other words, what appears to be an “impact 
factor” (a selection criteria X based on a particular con-
cept) may just be correlations with other omitted factors 
that are, in fact, unrelated to the impact concept one 
intends to capture. Therefore, impact estimates may 
be inaccurate and misleading without first properly 
accounting for all known factors.

This observation is supported empirically by both 
Blitz and Fabozzi (2017) in the case of estimating excess 
returns for sin stocks and Madhavan et al. (2021) for ESG 
scores, both of which we discuss in more detail in Sec-
tion 6.

5. Impact-Portfolio Construction
Having quantified the distribution of the induced order 
statistics, α[i:N], we can now construct portfolios based 
on the impact factor, X, and characterize the statistical 
properties of their excess returns. We first quantify the 
performance of arbitrary impact portfolios. We then use 
the Treynor and Black (1973) framework to derive the 
optimal weights for each security as well as the optimal 
way to combine an impact portfolio with any existing 
portfolio, such as the passive market index. The latter 
result follows directly from our ability to completely 
characterize the statistical properties of individual 
alphas in our framework.

5.1. Properties of Arbitrary Impact Portfolios
Consider an arbitrary impact portfolio of n0 securities 
with indexes in S:

S ≡ {i1, i2, : : : , in0}, (28) 

which is obtained from a rank ordering of securities 
from the investment universe according to the impact 
factor, X. The excess return of the portfolio is then given 
by

α̃ ≡
X

i∈S
ωiα[i:N], (29) 

where {ωi : i ∈ S} are arbitrary portfolio weights that 
sum to one. Based on the distribution of the induced 
order statistics in Proposition 2, we have the following 
result for portfolio excess returns.

Proposition 6. Under Assumption 1, the expected excess 
return of a portfolio S defined in (28) is

E[α̃] �
X

i∈S
ωiµi � ρσα

X

i∈S
ωiE[Xi:N], (30) 

and the variance is

Var(α̃) �
X

i∈S
ω2

i σ
2
i + 2

X

i< j∈S
ωiωjσij

� σ2
α

 

1� ρ2 + ρ2

 
X

i∈S
ω2

i Var(Xi:N)

+ 2
X

i< j∈S
ωiωjCov(Xi:N, Xj:N)

!!

: (31) 

Proposition 6 quantifies the distribution of excess 
returns for any portfolio constructed according to the 
impact factor, X. Online Appendix A.3 provides several 
numerical examples where impact portfolios are formed 
based on top-ranking securities and decile portfolios. 
This result implies that the full range of tools and results 
from modern portfolio theory can be applied here, 
including the calculation of various performance 
metrics, such as the Sharpe ratio (Sharpe 1966), the Sor-
tino ratio (Sortino and Van Der Meer 1991, Sortino and 
Price 1994), and information ratios (Treynor and Black 
1973); performance attribution (Brinson et al. 1986); and 
active portfolio management and enterprise risk man-
agement (Grinold and Kahn 1999).

5.2. Treynor–Black Portfolios
A key advantage of our framework is the ability to char-
acterize the alphas of arbitrary impact portfolios via 
induced order statistics. Given this representation, it is 
clear that equal-weighted portfolios are not optimal in 
terms of achieving the best risk-adjusted returns.

However, Treynor and Black (1973) provide a meth-
odology that is designed to maximize a portfolio’s 
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Sharpe ratio when investors have access to alpha fore-
casts for a certain subset of securities.21 This can be inter-
preted as a temporary departure from equilibrium in the 
sense of mispricings that investors can exploit or differ-
ences in information across investors in the sense of 
omitted risk factors. In either case, the Treynor and Black 
(1973) methodology allows us to construct a portfolio 
that maximizes the Sharpe ratio, which can be directly 
applied in our case to derive optimal weights for securi-
ties selected by the impact factor.

To apply the Treynor–Black framework, we rewrite 
the excess return of the ith security, αi, as its mean plus 
noise:

αi � µi + ζi, (32) 

where {ζi} are independent random variables with zero 
means. We can then combine ζi with security i’s idiosyn-
cratic error, ɛi. Because ζi and ɛi are independent, the 
combined idiosyncratic variance for security i is simply 
σ2

i + σ(ɛi)
2, where σ2

i is given in (9).
Given any number of securities selected by X, we can 

form an optimal portfolio based on the Treynor–Black 
weights, which we summarize in the following result.

Proposition 7. Under Assumption 1, the Treynor–Black 
weight of security i is proportional to its expected alpha 
divided by its combined idiosyncratic variance:

ωi ∝
µi

σ2
i + σ(ɛi)

2 : (33) 

In addition, if the idiosyncratic volatility, σ(ɛi), is constant 
across securities i, as N increases without bound, the 
Treynor–Black weight of security i in (33) can be further 
simplified to

ωi∝
ρσαΦ

�1(ξi)

σ2
α(1� ρ2) + σ(ɛi)

2 ∝Φ
�1(ξi) ·Constant: (34) 

Proposition 7 gives an explicit formula for the Treynor– 
Black weights that optimize the risk-adjusted returns of 
the impact portfolio, which can easily be implemented 
in practice. For further intuition behind (33), recall that 
the variance of the ith induced order statistic, σ2

i , is 
approximately a constant when N is large (see Figure 
1(b)). The expected excess return, µi � ρσαE[Xi:N], varies 
with respect to i only through the last term E[Xi:N]. As a 
result, if each security’s idiosyncratic volatility is the 
same, the Treynor–Black weights of security i in (33) 
depend only on their relative ranking in the universe of 
N securities, which is specified by the term Φ�1(ξi) in 
(34).

The portfolio selected by ranking X and applying the 
Treynor–Black weights in (33) is one specific example of 
an impact portfolio we defined in Section 3.3. Treynor and 
Black (1973) call this the “active management” portfolio, 

and its return characteristics are given by

αA �
Xn

k�1
ωkµk, (35) 

βA �
Xn

k�1
ωkβk, (36) 

σ(ɛA)
2
�
Xn

k�1
ω2

k σ
2
k + σ(ɛk)

2
� �

: (37) 

These results—together with the explicit quantifica-
tion of individual-security alphas in Propositions 2
and 5 and the optimal Treynor–Black weights in Prop-
osition 7—provide a complete characterization of the 
performance of optimal impact portfolios. In particu-
lar, the information ratio of the impact portfolio, 
defined as E[αA]=σ(ɛA), is proportional to the correla-
tion, ρ, between the unobserved alpha, a, and the 
impact factor, X. This is closely related to the funda-
mental law of active management (FLAM) by Grinold 
(1989),22 which provides a simple approximation of 
the information ratio of an active portfolio by the prod-
uct of information coefficient (ρ�in our notation) and 
the breadth of a strategy.23 Online Appendix A.3 pro-
vides several numerical examples of the performance 
of Treynor–Black impact portfolios.

5.3. Combining Impact and Passive Portfolios
Once the relative weights of the securities within an 
impact portfolio are determined, one can combine the 
portfolio with any other portfolio. For example, we may 
form an impact portfolio by ranking a company’s impact 
on global warming, which can be combined with other 
characteristics, such as sustainable farming, tobacco 
usage, and gaming, to form an overall “ESG” portfolio. 
We can also add the impact portfolio to the suite of port-
folios mimicking more traditional asset-pricing factors, 
such as value, size, and momentum.

However, perhaps the most natural application is to 
consider combining the impact portfolio with a passive 
index fund, such as the market portfolio. Let ωA denote 
the weight of the impact portfolio and 1�ωA denote the 
weight of a passive portfolio. To maximize the Sharpe 
ratio of the combined portfolio, the relative weight is 
determined by the impact portfolio’s excess return and 
idiosyncratic volatility:

ωA �
αA

σ(ɛA)
2

 !� E[Rm]�Rf

σ2
m

� �

, (38) 

where E[Rm] and σ2
m are the expected return and vari-

ance of the passive portfolio, respectively.
We illustrate the impact portfolio’s alpha and its 

corresponding weight, ωA, using a numerical example. 
Suppose the passive portfolio has an annualized risk 
premium of E[Rm]�Rf � 6% and volatility of σm � 15%. 
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The idiosyncratic volatility is a constant σ(ɛi) � 15% for 
all securities.24 Consider again a collection of N � 500 
securities. We divide them into 10 decile portfolios 
ranked by the impact factor, X. For several different 
values of ρ�and σα, panel A of Table 1 reports the 
expected excess return of the impact portfolio,25 αA in 
(35), for the top and bottom two decile portfolios. Panel 
B of Table 1 reports the weight, ωA, and the correspond-
ing excess return of the impact portfolio combined with 
the passive portfolio.

We first consider the case in which the cross-sectional 
standard deviation σα � 2%. In other words, most secu-
rities’ excess returns are within [�2σα, 2σα] � [�4%, 4%]. 
This is a fairly conservative assumption for U.S. equi-
ties,26 but even with such a modest range of a, the 
impact portfolios yield economically significant alphas. 

For example, αA for the top decile is 1.1% when the cor-
relation ρ � 30% and 0.4% when ρ � 10%. Observe that 
ρ2 is simply the R2 of the cross-sectional regression of a 
on X, so a 30% (10%) correlation implies that only 9% 
(1%) of the variation in a is explained by X, which is a 
fairly plausible assumption for a typical impact factor.

When the cross-sectional standard deviation, σα, 
increases to 5%, the alpha of the top decile impact portfo-
lio increases further to 2.8% with a 30% correlation and 
0.9% with a 10% correlation.

When combined with the passive index to form 
long/short portfolios, the optimal portfolio contains sig-
nificant weight from the impact portfolio, sometimes 
implying a highly leveraged position (the top half of 
panel B of Table 1). The corresponding gain in expected 
excess return for the combined portfolio is 8.9% when 

Table 1. Expected Excess Returns for the Impact Portfolios and Their Corresponding Treynor–Black Weights When Com-
bined with a Passive Portfolio

Panel A: Expected excess return of the impact portfolio (αA)

Correlation ρ Bottom, % Second, % Ninth, % Top, %

σα � 2%
30% (R2 � 9%) �1.1 �0.6 0.6 1.1
10% (R2 � 1%) �0.4 �0.2 0.2 0.4
�10% (R2 � 1%) 0.4 0.2 �0.2 �0.4
�30% (R2 � 9%) 1.1 0.6 �0.6 �1.1

σα � 5%
30% (R2 � 9%) �2.8 �1.6 1.6 2.8
10% (R2 � 1%) �0.9 �0.5 0.5 0.9
�10% (R2 � 1%) 0.9 0.5 �0.5 �0.9
�30% (R2 � 9%) 2.8 1.6 �1.6 �2.8

Panel B: Impact portfolios combined with a passive portfolio

Correlation ρ

Weight ωA Expected excess return ωAαA

Bottom Second Ninth Top Bottom, % Second, % Ninth, % Top, %

Long/short, σα � 2%
30% (R2 � 9%) �1.31 �0.78 0.78 1.31 1.4 0.5 0.5 1.4
10% (R2 � 1%) �0.44 �0.26 0.26 0.44 0.2 0.1 0.1 0.2
�10% (R2 � 1%) 0.44 0.26 �0.26 �0.44 0.2 0.1 0.1 0.2
�30% (R2 � 9%) 1.31 0.78 �0.78 �1.31 1.4 0.5 0.5 1.4

Long/short, σα � 5%
30% (R2 � 9%) �3.23 �1.93 1.93 3.23 8.9 3.1 3.1 8.9
10% (R2 � 1%) �1.08 �0.64 0.64 1.08 1.0 0.3 0.3 1.0
�10% (R2 � 1%) 1.08 0.64 �0.64 �1.08 1.0 0.3 0.3 1.0
�30% (R2 � 9%) 3.23 1.93 �1.93 �3.23 8.9 3.1 3.1 8.9

Long only, σα � 2%
30% (R2 � 9%) 0 0 0.78 1.00 0 0 0.5 1.1
10% (R2 � 1%) 0 0 0.26 0.44 0 0 0.1 0.2
�10% (R2 � 1%) 0.44 0.26 0 0 0.2 0.1 0 0
�30% (R2 � 9%) 1.00 0.78 0 0 1.1 0.5 0 0

Long only, σα � 5%
30% (R2 � 9%) 0 0 1.00 1.00 0 0 1.6 2.8
10% (R2 � 1%) 0 0 0.64 1.00 0 0 0.3 0.9
�10% (R2 � 1%) 1.00 0.64 0 0 0.9 0.3 0 0
�30% (R2 � 9%) 1.00 1.00 0 0 2.8 1.6 0 0

Notes. We set N � 500 and assume that the passive portfolio has an annualized expected excess return of E[Rm]�Rf � 6% and volatility of 
σm � 15%. The idiosyncratic volatility is a constant σ(ɛi) � 15% for all securities. Panel A reports αA for the impact portfolio, and Panel B reports 
the weight, ωA, and the corresponding excess return of the impact portfolio combined with the passive portfolio.

Lo and Zhang: Quantifying the Impact of Impact Investing 
12 Management Science, Articles in Advance, pp. 1–26, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

8.
21

0.
43

.2
40

] 
on

 0
7 

D
ec

em
be

r 
20

23
, a

t 0
7:

15
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



ρ � 30% and 1.0% when ρ � 10%. Of course, these calcu-
lations are meant only to be proofs of concept because 
we have not considered specific regulatory and institu-
tional constraints for investors in practice. The leveraged 
portfolios with short positions in the passive index may 
be suitable only for certain types of hedge funds.

The bottom half of panel B of Table 1 shows the per-
formance of long-only combined portfolios, which cor-
responds to a constrained weight, ωA, between zero and 
one. When the correlation, ρ, is positive, only the top 
two deciles provide positive alpha and therefore, yield 
positive weight in the combined portfolio. When 
σα � 5%, for example, this leads to a sizable expected 
excess return of 2.8% when ρ � 30% and 0.9% when 
ρ � 10%. Section 6 provides two real-world examples 
with positive impact alpha in the context of venture phi-
lanthropy and R&D subsidies.

When the correlation, ρ, is negative, only the bottom 
two deciles provide positive excess returns. However, 
securities in these deciles have the lowest impact factor 
X. Therefore, impact investors may get an estimate of 
the opportunity cost of not investing in these portfolios. 
Divesting from sin stocks provides a real-world example 
in this case, which we discuss further in Section 6.

More generally, Online Appendix A.4 provides addi-
tional examples that generalize results in Table 1.

Finally, we show how our impact portfolio improves 
the efficient frontier and the capital market line to 
achieve a “superefficient frontier” under the assumption 
that a are mispricings. Under the alternate omitted- 
factor interpretation, the “superefficiency” of the new 
frontier may be viewed as the result of additional risk 
premia not accessible to investors except through impact- 
portfolio managers.

Proposition 8. Under Assumption 1, the return of the 
final portfolio, P, that consists of the impact portfolio with 
Treynor–Black weights and the passive market portfolio is

RP � Rf � ωARA + (1� ωA)Rm � Rf

� ωAαA + (Rm � Rf )(βAωA + (1� ωA)) + ωAɛA,
(39) 

where Rm is the return of the passive portfolio. The expected 
value and variance of RP are
E[RP]� Rf � ωAαA + (E[Rm]� Rf )(βAωA + (1� ωA)),

(40) 
Var[RP] � Var[Rm](βAωA + (1� ωA))

2
+ ω2

Aσ(ɛA)
2
:

(41) 

This forms a superefficient frontier in comparison with the 
capital market line associated with the passive portfolio.

Figure 3 displays the passive portfolio as well as sev-
eral combinations with impact portfolios in relation to 
the efficient frontier. We continue to assume that the 

passive portfolio has an annualized risk premium of 
E[Rm]�Rf � 6% and volatility of σm � 15%. In Figure 3, 
(a) and (c), the idiosyncratic volatility is assumed to be a 
constant σ(ɛi) � 15% for all securities. As the correlation, 
ρ, and variance in alpha, σ2

α, increase, the impact portfo-
lios (defined as the top half of the securities ranked by X) 
are able to improve the original capital market line for 
both long/short and long-only portfolios, leading to 
superefficient frontiers.

The results in this section have so far relied on the 
assumption that the idiosyncratic volatility, σ(ɛi), is 
cross-sectionally constant. To check the robustness of 
our results, we simulate a collection of securities where 
the ith security’s idiosyncratic volatility follows a log-
normal distribution:

log(σ(ɛi)) ~ Normal(µɛ,σɛ): (42) 

Calibrating to empirically plausible values in the litera-
ture (e.g., Kuntz 2020), we perform simulations for 
log(µɛ) � 15% and σɛ � 1. Figure 3, (b) and (d) confirms 
that even with such cross-sectional heterogeneity, the 
capital market line is still improved, leading to supereffi-
cient frontiers.

5.4. Qualifications
The Treynor–Black portfolios outlined in Propositions 7
and 8 provide the optimal impact portfolios when inves-
tors face no constraints. In practice, investors may face 
additional regulatory and institutional constraints, such 
as limits on short positions and sector concentration. 
Because our framework quantifies the expected alpha 
for individual securities, it is easy to derive optimal 
impact portfolios accounting for these additional con-
straints as well. Section 5.3 provides examples of long- 
only portfolios. In the meantime, we emphasize that the 
performance metrics associated with these portfolios 
should be taken as proofs of concept, and real-world 
investors should account for their specific constraints 
and trading costs on top of our framework to derive 
proper benchmarks.

Our framework provides a methodology to construct 
more robust portfolios in practice compared with tradi-
tional approaches. First, investors may follow traditional 
mean-variance optimization and integrate the level of 
impact as part of either the objective or the constraint.27

However, estimating the expected return and covari-
ance matrix in traditional Markowitz portfolios is 
known to be challenging, which often leads to unstable 
portfolios (Brodie et al. 2009, Tu and Zhou 2011). Thanks 
to the ability to quantify individual security alphas 
based on a small (two) number of parameters, our 
approach provides a much more regularized approach 
to constructing optimal impact portfolios.

Second, investors may also build portfolios through 
a univariate regression, in which security alphas are 
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estimated by regressing returns onto the impact factor 
X. Compared with this approach, our framework corre-
sponds more closely to how the industry actually 
constructs impact portfolios, which usually relies on 
ordering securities based on X and assigning weights in 
each quartile or decile. In fact, our theory requires 
weaker assumptions because the results only depend on 
the rank of X, not its value. As a result, the optimal port-
folio relies on quantiles of X, making our approach 
robust against noise and outliers as demonstrated 
empirically by Lo et al. (2022a). The focus on rank also 
allows for the generalization of our theory to capture 
nonlinear dependence between returns and the impact 
factor as shown in a subsequent study (Lo et al. 2022b).

The key insight of our framework lies in the ability 
to quantify the distribution of impact-ranked returns 

when mispricings exist for individual securities. In the 
omitted factor interpretation, it identifies impact fac-
tors X that explain the cross-section of security returns 
and furthermore, quantifies the excess returns associ-
ated with these omitted factors. If alphas are fully 
observed—either in the mispricing or omitted factor 
interpretation—then investors have complete infor-
mation to trade-off returns and impact, and optimal 
impact portfolios can simply be constructed following 
Treynor and Black (1973). Our framework shows how 
to quantify the impact of impact investing when 
alphas are unknown in the real world and construct 
the optimal portfolio that achieves a “superefficient 
frontier” either through mispricings or additional risk 
premia not accessible to investors except through 
impact-portfolio managers.

Figure 3. (Color online) Superefficient Frontiers from the Combined Portfolio That Consists of the Impact Portfolio and Passive 
Market Portfolio 

Notes. Panels (a) and (b) allow short positions in the passive index, whereas panels (c) and (d) consider long-only portfolios. In panels (a) and (c), 
the idiosyncratic volatility is a constant σ(ɛi) � 15% for all securities. In panels (b) and (d), we simulated idiosyncratic volatility based on (42) and 
apply a maximum leverage ratio of 3:1. (a) Long/short, constant σ(ɛi). (b) Long/short, simulated σ(ɛi). (c) Long only, constant σ(ɛi). (d) Long 
only, simulated σ(ɛi).
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When alphas are interpreted as omitted factors whose 
beta loadings are correlated with the impact factor, X, 
our model also provides an approach to recovering the 
stochastic discount factor (SDF).28 To see this, observe 
that our results in Proposition 5 quantify the excess 
returns of impact-ranked securities and in particular, 
identify X that explains the cross-section of returns. The 
correlation scaled by the standard deviation, ρadjσλ, can 
be treated as the risk premium for the omitted factor, 
whereas the standardized impact score, E[Xi:N], pro-
vides the factor loadings. Because a factor model in 
expected returns always corresponds to a factor model 
in SDF space, our framework essentially recovers the 
SDF with respect to this factor X, although the corre-
sponding SDF is not uniquely determined.29

6. Applications to Five Impact 
Investments

In this section, we apply our framework to five particu-
lar examples of impact investing: biotech venture phi-
lanthropy, semiconductor R&D consortium, divesting 
from sin stocks, ESG investing, and the GameStop short 
squeeze during January 2021.

6.1. Venture Philanthropy: The Cystic 
Fibrosis Foundation

The concept of VP was introduced by Letts et al. (1997), 
who suggested that nonprofit organizations could learn 
useful practices from venture capitalists. In particular, 
recent biomedical advances have created significant 
opportunities for a new generation of therapeutics 
(Sharp and Hockfield 2017). However, early-stage R&D 
efforts often face a dearth of funding given the high risk 
of failure and significant funding requirements. This has 
been particularly true for rare disease drug develop-
ment, where market sizes are often too small to attract 
much attention and funding (Kim and Lo 2019).

We consider the example of the CF Foundation— 
profiled in the case study by Kim and Lo (2019)—and 
conclude that VP in biomedicine can produce significant 
positive excess returns. This example illustrates the pos-
sibility of an impact investment that is positively corre-
lated with a or an omitted factor that patient advocacy 
groups can more easily exploit than typical investors.

The CF Foundation is the world’s leading philan-
thropic organization for CF, a rare genetic disease that 
currently affects more than 30,000 Americans. Over a 
period of 12 years, the CF Foundation invested $150 mil-
lion to fund CF drug development efforts at Vertex 
Pharmaceuticals, which led to the identification and 
development of Kalydeco, the first Food and Drug 
Administration-approved treatment to address the 
underlying causes of CF. In 2014, their rights to Vertex 
royalties were sold to an outside investment firm, New 
York City-based Royalty Pharma, for $3.3 billion in cash.

If we assume for simplicity that the $150 million 
investment was made up front and the $3.3 billion sale 
occurred 12 years later, this implies a compound annual 
return of 29.4% over this period. To estimate the realized 
α�of this investment, we require an estimate of the cost 
of capital of Vertex during the 12-year investment period 
from 2002 to 2013 prior to the 2014 royalty sale. We con-
sider a simple CAPM model:

Ri � Rf � αi + βi(RM � Rf ) + ɛi, (43) 

where Ri is the return of the ith security with CF Founda-
tion being one of them, Rf is the risk-free rate, and RM is 
the market return. The average beta of Vertex between 
January 2, 2001 and December 31, 2013 was 1.42 (see 
Online Appendix A.5). The average five-year constant- 
maturity treasury yield from January 2001 to December 
2013 was 2.8%,30 and the annualized compound return of 
the Center for Research in Security Prices (CRSP) value- 
weighted returns index with dividends during this period 
was 5.4%; hence, a simple CAPM estimate of the cost of 
capital is 1:42 × (5:4%� 2:8%) + 2:82% � 6:5%.

Of course, this crude estimate does not account for the 
illiquid nature of biomedical assets and the financing 
risks that their multiyear investment horizons pose. A 
cost of capital of 20% for privately held biotech invest-
ments is a commonly used industry benchmark. There-
fore, a plausible range for the α�of the CF Foundation’s 
investment in Vertex is 9.4% (using a 20% cost of capital) 
to 22.9% (using a 6.5% cost of capital).

Using this estimated range for the CF Foundation’s α, 
we can estimate its correlation with a “rare disease 
impact investing” factor X. Making a few additional 
assumptions about auxiliary parameters, we can reverse 
engineer the implied correlation, ρ, that is consistent 
with this performance range, which is [35%, 86%].31 Our 
highly stylized calculations are not meant to yield a rig-
orous estimate of the true alpha associated with drug 
development for rare diseases, and the plausible range 
of the true alpha is likely larger, potentially including 
zero. However, more systematic empirical analyses of 
the biopharma industry show that pharmaceutical 
companies have become increasingly profitable, with 
risk-adjusted returns outperforming the aggregate stock 
market in recent years (Thakor et al. 2017, Lo and Thakor 
2019). The example of the CF Foundation provides addi-
tional intuition for how impact and investment perfor-
mance need not be a zero-sum game in the presence of 
sufficient correlation between impact and performance.

However, there is a deeper message in this striking 
example, which is that in certain cases, impact is a prereq-
uisite for performance. The CF Foundation’s main 
objective—helping to create a disease-modifying drug for 
CF—was, in fact, the primary source of Vertex’s outsized 
investment performance. The fact that the foundation 
focused on this one long-term goal—to the exclusion of 
shorter-term financial metrics and milestones—and was 
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willing to continue investing in Vertex over multiple 
years despite business cycle fluctuations (including the 
2008 Financial Crisis) contributed significantly to its suc-
cess (both in impact and in financial returns). Indeed, 
many traditional venture capitalists have shied away 
from investing in projects with such high risks and long- 
term capital commitments. In other words, in this case, 
correlation may actually be causation; impact can some-
times be responsible for financial success.

6.2. An R&D Consortium: Sematech
The second example of impact investing is Sematech, an 
R&D consortium established in 1987 by 14 U.S. semicon-
ductor firms and the U.S. Government to solve common 
manufacturing problems by leveraging shared R&D 
resources and research results. It was funded by a com-
bination of the U.S. Government initially and member 
firms later on.

To measure the returns to Sematech as a form of 
impact investing, we follow Irwin and Klenow (1996a) 
and use a difference-in-difference approach to compare 
the excess return to Sematech member firms against 
those of nonmembers, controlling for past returns prior 
to the formation of Sematech. In particular, we collect 
monthly return data from CRSP for all U.S. firms whose 
principal business is semiconductors and related devices 
with Standard Industrial Classification (SIC) 3674 from 
1975 to 1999.32 Our sample consists of 52 firms, including 
11 of the original 14 members of Sematech.33

For each firm, we divide the sample into pre-Sematech 
(January 1975 to August 1987) and post-Sematech (Sep-
tember 1987 to December 1999) periods and estimate two 
CAPM models:

Ri, pre � Rf , pre � αi, pre + βi, pre(RM, pre � Rf , pre) + ɛi,

Ri, post � Rf , post � αi, post + βi, post(RM, post � Rf , post) + ɛi,

(44) 

where Ri, · is the return of the ith security, Rf , · is the risk- 
free rate estimated by the five-year constant-maturity trea-
sury yield, and RM, · is the market return estimated by the 
CRSP value-weighted returns index including dividends.

Table 2 summarizes the estimated annualized alphas. 
Sematech member firms have an average excess return 

of 7.23% after joining the R&D consortium compared 
with an average of �2.67% prior to Sematech’s forma-
tion. In comparison, the average excess returns for non-
member firms are around �9% in both periods. This 
leads to an overall difference-in-difference estimate of 
10.22% lift in annualized excess returns for a firm that 
joined the R&D consortium, with a 90% bootstrap confi-
dence interval of [0:56%, 19:88%]. If we consider an 
impact factor X with Xi � 1 representing Sematech 
membership and zero otherwise, this leads to an esti-
mated correlation, ρ, of 25% with a range of [1:4%, 49%]
between the Sematech impact factor and excess 
returns.34

Our estimated excess returns based on the simple 
CAPM model should only be interpreted as a crude 
approximation to the true effect of Sematech, and the 
true effect may be different once other control variables 
are accounted for. In particular, firms’ entry decisions 
into the consortium may be endogenously affected by 
other factors, such as the size and the profitability of the 
firm. We conduct a simple analysis in Online Appendix 
A.6 to mitigate this concern by comparing basic charac-
teristics for Sematech versus non-Sematech firms and by 
showing that the impact from Sematech largely remains 
robust on samples that are constructed to match the dis-
tribution of Sematech firms.

Our results are also consistent with prior evidence 
on Sematech’s far-reaching effects on members’ R&D 
spending and profitability (Irwin and Klenow 1996a, b; 
Link et al. 1996). In particular, Irwin and Klenow (1996a) 
show that joining Sematech improves firms’ profitabil-
ity, which provides a potential channel through which 
excess returns are earned.

This example shows how the impact of R&D consortia 
can be measured in our framework, and the difference- 
in-difference approach yields a potentially causal esti-
mate of the positive financial impact of the Sematech 
impact factor.

6.3. Divesting Sin Stocks
Another particular type of impact investing is avoiding 
or divesting sin stocks—stocks from companies involved 
in or associated with activities considered unethical or 
immoral. Although there may be a degree of subjectivity 

Table 2. Estimated Annualized CAPM Excess Returns Based on a Difference-in-Difference Approach That Compares Sema-
tech Member Firms with Nonmembers Before and After the Formation of Sematech

Firm Period Excess return, %
Excess return 

(post minus pre), %
Excess return 

(difference in difference), %

Sematech members Pre �2.67 9.90** 10.22*
Post 7.23***

Nonmembers Pre �8.90*** �0.33
Post �9.22***

*Estimated coefficients are significant at the 10% level based on bootstrap confidence intervals; **estimated coefficients are significant at the 5% 
level based on bootstrap confidence intervals; ***estimated coefficients are significant at the 1% level based on bootstrap confidence intervals.
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involved in determining what is considered sinful, com-
mon examples include companies involved in producing, 
distributing, or otherwise supporting alcohol, tobacco, 
gambling, sex-related industries, and firearms. It has 
been found that sin stocks are less held by norm- 
constrained institutions, such as pension plans, as com-
pared with mutual or hedge funds, and they receive less 
coverage from analysts. As a result, sin stocks seem to 
yield higher expected returns (Fabozzi et al. 2008, Hong 
and Kacperczyk 2009, Statman and Glushkov 2009).

This empirical fact implies a negative correlation 
between a stock’s excess return and an “antisin stock” 
factor. In terms of the superefficient frontier shown in 
Figure 3, divesting from sin stocks likely yields a nega-
tive return and a lower efficient frontier. This leads to a 
natural definition of the cost to this specific impact 
factor.

We use Hong and Kacperczyk (2009) to calibrate our 
model and focus on tobacco, alcohol, and gambling as 
proxies for sin stocks. The authors report a monthly 
excess return of 0.26% for an equal-weighted portfolio 
long sin stocks and short their comparables by running a 
time series regression controlling for market, size, value, 
and momentum factors using equity data in the United 
States from 1965 to 2006. This corresponds to the follow-
ing four-factor asset-pricing model,

Ri � Rf � αi + βi, 1(RM � Rf ) + βi, 2SMB + βi, 3HML
+ βi, 4MOM + ɛi, (45) 

and an impact factor X representing whether a stock is 
considered sin. The Hong and Kacperczyk (2009) esti-
mate can be used to calculate the implied correlation 
between a and X in our model using results from Propo-
sition 2 and Proposition A.2 in the online appendix (see 
also the discussions in Online Appendix A.2).

Panel A of Table 3 summarizes these calibration 
results.35 The implied correlation is 27% (R2 � 7:2%) 
assuming a standard deviation of cross-sectional alpha 

of σα � 5%.36 This leads to a measure of the cost of avoid-
ing sin stocks. If we form an impact portfolio based on 
the top half of all securities based on the antisin factor, it 
leaves an excess return of 1.7% per annum on the table. 
If we form a Treynor–Black portfolio based on the omit-
ted sin stocks and the passive market portfolio, we could 
have achieved a leveraged alpha of 14.4% per annum 
with a (leveraged) weight of 8.58 for the sin stocks port-
folio. On the other hand, if we form an impact portfolio 
by leaving out only the top decile (or top 2%) of the most 
sinful stocks, the opportunity cost is 2.5% (3.3%).

In fact, a few studies have tried to understand why sin 
stocks appear to show positive excess returns. In particu-
lar, Blitz and Fabozzi (2017) show that sin stocks indeed 
exhibit a significantly positive CAPM alpha, but this 
alpha disappears completely when controlling not only 
for classic factors, such as size, value, and momentum, 
but also for exposures to the two new Fama and French 
(2015) quality factors—profitability and investment. This 
corresponds to the following six-factor asset-pricing 
model:

Ri � Rf � αi + βi, 1(RM � Rf ) + βi, 2SMB + βi, 3HML

+ βi, 4MOM + βi, 5RMW + βi, 6CMA + ɛi:

(46) 

We also summarize the implied correlation and cost of 
divesting sin stocks based on Blitz and Fabozzi (2017) in 
panel B of Table 3.37 Both the correlation and sin stock 
excess returns decrease sharply based on this study.

This example highlights the fact that the measurement 
of excess returns of impact investing depends on the 
specific asset-pricing model used to estimate alpha. Our 
framework can be applied to any number of factors as 
specified in (1) and (2). Indeed, a factor may yield posi-
tive correlation with alpha under one asset-pricing 
model (implying a positive excess return) and may dis-
appear or change sign after controlling for additional 
factors.

Table 3. Estimated Cost in Excess Return per Annum for Avoiding Sin Stocks Calibrated to Prior Empirical Studies

Impact portfolio Weight of impact portfolio ωA

Expected excess return, %

Impact portfolio αA Combined with passive portfolio ωAαA

Panel A: Hong and Kacperczyk (2009)
Implied correlation ρ � 27% (R2 � 7:2%)

Top half 8.58 1.7 14.4
Top decile 3.78 2.5 9.35
Top 2% 1.04 3.3 3.4

Panel B: Blitz and Fabozzi (2017)
Implied correlation ρ � 10% (R2 � 1:1%)

Top half 3.30 0.6 2.1
Top decile 1.45 1.0 1.4
Top 2% 0.40 1.3 0.5

Note. Here, we assume that the passive portfolio has an annualized risk premium of E[Rm]�Rf � 6%, volatility of σm � 15%, and σα � 5%.
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6.4. ESG Investing
More generally, SRI and ESG-aware investing have both 
drawn an increasing amount of attention in recent years. 
Our model provides a systematic framework to measure 
the financial impact of SRI and ESG—positive or 
negative—and construct optimal portfolios based on the 
correlation between the impact characteristic and excess 
returns.

As with the sin stocks in Section 6.3, we also calibrate 
our model with respect to several studies in Table 4. 
Panel A uses the estimates from Berg et al. (2022c), who 
construct ESG portfolios based on a range of aggregation 
methods to denoise ESG metrics from six different data 
vendors. They report an annualized Fama–French five- 
factor alpha of 4.5% for the top-bottom decile portfolio 
in the United States using a simple average ESG score, 
which implies a correlation of 26% (R2 � 6:7%) between 
stock alpha and the ESG impact factor. This is consistent 

with opinions from industry advocates of ESG, although 
the magnitude of excess returns in the literature varies 
with the specific ESG metric.

In contrast, Baker et al. (2022) study the U.S. bond 
market and report a yield difference of six basis points at 
issuance for green bonds below other ordinary bonds.38

This corresponds to a plausible and economically mean-
ingful 0.6% difference in value on a bond with a 10-year 
duration. Panel B of Table 4 shows the implied correla-
tion of �2%.39 This result points to a negative to neutral 
ESG alpha in the bond market, in which case the excess 
return, ωAαA, in the last column should be interpreted 
as the cost to ESG investing in this particular market.

In addition, several recent studies provide additional 
insights into what economic state variables potentially 
drive the observed ESG returns. Using stock data from 
S&P 500 and Russell 3000 in 1993–2013, Bansal et al. 
(2022) document a “luxury-good effect” for an ESG 

Table 4. Estimated ESG Excess Returns per Annum Calibrated to Prior Empirical Studies

Impact portfolio Weight of impact portfolio ωA

Expected excess return, %

Impact portfolio αA Combined with passive portfolio ωAαA

Panel A: Berg et al. (2022c)
Implied correlation ρ � 26% (R2 � 6:7%)

Top half 3.20 1.61 5.15
Top decile 1.41 2.38 3.35
Top 2% 0.39 3.14 1.24

Panel B: Baker et al. (2022)
Implied correlation ρ � � 2:0% (R2 � 0:04%)

Top half �1.06 �0.02 0.03
Top decile �0.47 �0.04 0.02
Top 2% �0.13 �0.05 0.00

Panel C: Bansal et al. (2022) (“good times”)
Implied correlation ρ � 22% (R2 � 4:7%)

Top half 2.69 1.35 3.64
Top decile 1.19 1.99 2.37
Top 2% 0.33 2.65 0.88

Panel D: Bansal et al. (2022) (“bad times”)
Implied correlation ρ � � 0:2% (R2 � 0:0%)

Top half �0.02 �0.01 0.00
Top decile �0.01 �0.02 0.00
Top 2% �0.00 �0.02 0.00

Panel E: Pástor et al. (2022)
Implied correlation ρ � 5:5% (R2 � 0:3%)

Top half 0.69 0.34 0.24
Top decile 0.30 0.51 0.15
Top 2% 0.08 0.68 0.06

Panel F: Lo et al. (2022)
Implied correlation ρ � 3:8% (R2 � 0:1%)

Top half 0.47 0.24 0.11
Top decile 0.21 0.35 0.07
Top 2% 0.06 0.46 0.03

Note. Here, we assume that the passive portfolio has an annualized risk premium of E[Rm]�Rf � 6%, volatility of σm � 15%, σα � 5% for stock 
markets, and σα � 1% for bond markets.
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factor that combines analyst ratings, firm announce-
ments, and realized incidents. Stocks with higher ESG 
ratings significantly outperform lower-ranked ones dur-
ing good economic times but not during bad economic 
times, resembling the demand for luxury goods. Their 
analysis corresponds to an impact factor X representing 
the customized ESG score and a four-factor asset-pricing 
model with an interaction term:

Ri �Rf � αi + βi, 0I+ βi, 1(RM �Rf ) + βi, 2SMB+ βi, 3HML
+ βi, 4MOM+ γi, 1(RM�Rf ) · I+ γi, 2SMB · I
+ γi, 3HML · I+ γi, 4MOM · I+ ɛi, (47) 

where I is a dummy variable representing good eco-
nomic times defined by the cyclically adjusted real P/E 
ratios from Shiller (2005). We report the implied correla-
tion between stock alpha and the ESG factor based on 
their estimates for good and bad economic times in 
panels C and D of Table 4, respectively. During good 
economic times, Bansal et al. (2022) report a monthly 
Fama–French four-factor alpha of 0.315% for the top- 
bottom ESG portfolio. This implies a 22% correlation 
between stock alpha and the ESG factor as well as siz-
able positive excess returns for the impact portfolios. 
However, during bad economic times, the monthly 
Fama–French four-factor alpha in Bansal et al. (2022) 
becomes �0.0026%, rendering all of our estimates of cor-
relation and ESG alpha essentially zero.

Pástor et al. (2022) provide another channel through 
which ESG returns can be explained. Based on the envi-
ronmental score from MSCI ESG Ratings data, which cor-
responds to the impact factor X in our framework, they 
document a highly significant monthly Fama–French 
three-factor alpha of 0.50% for a green-minus-brown 
portfolio,40 which reduces to an insignificant level of 
0.05% when excess returns are regressed on proxies of 
unexpected climate shocks:

Ri�Rf � αi + βi, 1(RM�Rf ) + βi, 2SMB+ βi, 3HML

+ βi, 4DCC+ βi, 5DCCLag1 + ɛi, (48) 

where DCC stands for a “delta climate concern” variable 
constructed from the Ardia et al. (2022) climate change 
concerns index and DCCLag1 is its one-month lagged 
values. This implies a much smaller correlation of 5.5% 
(panel E of Table 4) compared with estimates from, for 
example, Berg et al. (2022c).

Similarly, panel F of Table 4 shows the estimates 
based on Lo et al. (2022a), who use the Trucost Environ-
mental data and find a similar effect to the Pástor et al. 
(2022) findings for a wide range of environmental mea-
sures including, in particular, carbon emissions. Based 
on the framework in this article, they estimate an annu-
alized alpha of 2.38% for a long/short green portfolio. 
This alpha reduces to a statistically insignificant level of 

0.3% per annum with the same proxy variables for unex-
pected climate shocks:

Ri � Rf � αi + βi, 1(RM � Rf ) + βi, 2SMB + βi, 3HML
+ βi, 4RMW + βi, 5CMA + βi, 6DCC
+ βi, 7DCCLag1 + ɛi, (49) 

which corresponds to a small implied correlation of 
3.8% between excess returns and a low-carbon impact 
factor X.41

The five studies we highlight in Table 4 underscore 
the difficulty in measuring consistent excess returns of 
ESG, which depend on many factors, including the asset 
class, region, and time period. In addition, the specific 
choice of asset-pricing model also affects the empirical 
estimates of ESG alpha (see also Geczy et al. 2021, Mad-
havan et al. 2021).

6.5. The GameStop Phenomenon
In January 2021, the share price of GME—a struggling 
video game retailer that had recently announced a 30% 
decline in 2020Q3 net sales in part because of an 11% 
reduction in their store base—went from $17.25 on Janu-
ary 5 to an all-time high of $347.51 on January 27.42

Although few investment professionals would consider 
GME an “impact investment,” it is difficult to categorize 
it as anything else given the apparent origin of its mete-
oric price spike.

The key turning point for GME seemed to be growing 
interest among retail investors affiliated with the Reddit 
forum “r/WallStreetBets.” Although it is difficult to 
determine the exact cause and motivation behind the 
early initiators, the GME price spike is unlikely to have 
been driven by changes in the fundamentals of the 
company,43 but rather, it was caused by a combination 
of a grassroots “David versus Goliath” conflict between 
retail investors and hedge-fund short sellers and the 
trend followers taking advantage of this dynamic. Other 
stocks that seemed to be involved in this movement 
included AMC Entertainment Holdings (AMC) and 
Blackberry (BB), both of which were facing short-selling 
pressure from institutional investors. These events 
attracted substantial media attention because of the pop-
ulist narrative that was playing out on social media at 
the time as well as the extraordinary price gyrations and 
wealth transfers involved. As shown in Figure 4, if an 
investor bought $1 of GME at the beginning of October 
2020, she would have gained over $30 at the end of Janu-
ary 2021. Strikingly, GME’s stock price stayed at a high 
level ever since. As of December 2022, the initial $1 is 
still worth over $10. This sustained price increase is no 
longer just attributable to temporary supply/demand 
imbalances; the increased value of GME equity gave the 
company substantial resources to improve its business, 
thereby allowing it to make positive changes in its 
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business that permanently altered its future prospects 
for the better.44

In a very real sense, WallStreetBets participants can be 
viewed as a general form of impact investors. Addition-
ally, by most accounts, they have been highly successful 
in achieving the impact they desired (i.e., punishing the 
short sellers, pushing up the price of an underdog com-
pany bullied by elite institutional investors, and saving 
the company from bankruptcy). However, to distin-
guish this type of activity from traditional impact invest-
ing, we shall call the GME phenomenon “price-impact 
investing.”

The GameStop example is likely driven by retail mania 
and herding rather than a social welfare-enhancing 
investment. It has a very different—perhaps opposite— 
underlying economic motivation from the previous 
impact-investing examples we gave. However, there are 
mechanical similarities between the GameStop mania 
and for example, ESG investing. The former can be 
driven by investor mania with fast and temporary shifts 
in preferences toward meme stocks, whereas the latter 
can be driven by slow but persistent shifts in preferences 
toward green assets (or concerns toward climate 
change), as shown by Lo et al. (2022a) and Pástor et al. 
(2022). In fact, some behavioral economists might argue 
that the distinction between manias and preference 
shifts is largely a matter of semantics.

In the case of GME, it is almost obvious in retrospect 
that the very act of investing can produce a positive α, at 
least for a short period of time.45 However, the same 
strategy may not work as well for other stocks. In gen-
eral, all stocks can be affected by such price-impact 
investors in theory, but the degree to which each of them 
is susceptible depends on a number of factors, including 
its market capitalization, liquidity, price dynamics, main 
shareholders, amount of short interest, sentiment and 
attention from the general public, and so on. Moreover, 
manipulating the prices of publicly traded equities 
clearly violates both securities law and antitrust regula-
tion.46 Hence, there are significant ethical and legal 

ramifications of this type of price-impact investing that 
have yet to be fully explored. Nevertheless, our impact 
framework provides a means to measure the magnitude 
of such investments, which could be an important 
component of policy debates on whether and how to 
regulate this type of activity. Because this type of price- 
impact investing is very different from the other impact 
investments, in Online Appendix A.7, we demonstrate 
how to apply well-known market-microstructure mod-
els, such as Bertsimas and Lo (1998), to quantify the rela-
tion between short-term trading programs and market 
price reactions.

In practice, it is difficult to accurately calibrate the rele-
vant parameters for each stock; hence, the expected 
profit of engaging in GME-like price-impact investing is 
correspondingly difficult to estimate. However, the fun-
damental determinant for a price-impact investor’s α�is 
the correlation between each stock’s trading profit and 
its susceptibility to price manipulations as a function of 
stock characteristics (e.g., market capitalization, liquid-
ity, and short interest). In fact, stocks like GME, AMC 
Entertainment Holdings, and Blackberry were the per-
fect targets for the short squeezes that occurred at the 
end of 2020 to early 2021 because of their highly publi-
cized amounts of short interest from hedge funds and 
high customer concentration in the young people, both 
of which are arguably correlated features with short- 
squeeze profits.

7. Discussion
Our framework for assessing the financial consequences 
of impact investing has several limitations and potential 
extensions that we review in this section.

7.1. Impact Measurement Error
It should be emphasized that measurement errors can 
exist in the impact variable X itself, just like any other 
stock-level characteristic. This is especially challenging 
for emerging concepts, such as ESG, as documented 
recently by Berg et al. (2022a). One potential approach to 

Figure 4. (Color online) Growth of One Dollar Invested in GME, AMC, and BB on a Semilogarithmic Scale 
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dealing with the noise in ESG measurement is to com-
bine multiple sources of data and get an improved signal 
with instrumented variable regression (Berg et al. 2022b) 
or aggregation methods designed for denoising (Berg 
et al. 2022c). Nonetheless, empirical estimates of ESG 
returns should be taken with the caveat that they are 
potentially affected by the measurement noise.

7.2. Asset-Pricing Models, Impact Factor 
Selection, and Economic Foundations

The examples in Section 6 underscore the fact that any 
quantitative assessment of impact investing depends 
critically on an asset-pricing model. In the same way 
that investment performance attribution requires a 
benchmark from which to measure deviations, our mea-
sures are always relative to a given benchmark asset- 
pricing model, such as those in (43)–(49). Therefore, to 
determine whether returns are attributable to a given 
impact variable or any other omitted variable, one can 
either include the proposed omitted variable in the fac-
tor model at the outset or directly test the omitted vari-
able as X using our framework. In either case, a concrete 
alternative hypothesis is required as in any test of a 
given asset-pricing model, such as the CAPM (Sharpe 
1964, Lintner 1965), the APT (Ross 1976), or the 
Fama–French multifactor models (Fama and French 
1993, 2015).47 In our example of sin stocks, Blitz and 
Fabozzi (2017) show that the initial excess returns docu-
mented by Hong and Kacperczyk (2009) reduce signifi-
cantly after accounting for two concrete omitted quality 
factors—profitability and investment.

More generally, the selection of impact variables X 
should be on the basis of a priori economic, institutional, 
scientific, social, and/or other rationales, which not only 
helps to establish relationships that are more likely to be 
robust and causal but also mitigates the measurement 
errors discussed. In the case of biotech venture philan-
thropy, curing the disease is a prerequisite and therefore, 
likely a causal impact factor for financial performance. 
The excess returns are driven by well-documented chal-
lenges in early-stage drug development programs, such 
as the low probabilities of success, long time horizons, 
and large capital requirements (Fagnan et al. 2013). In 
the Sematech example, there exist well-documented eco-
nomic channels through which the superior financial 
performance can be realized, which is reduced R&D 
duplication and increased profitability per R&D dollar 
for member firms (Irwin and Klenow 1996a). Our 
difference-in-difference approach also adds additional 
confidence to the causal nature of this impact factor. For 
sin stocks, the excess returns can be explained by the 
Merton (1987) model of neglected stocks and segmented 
markets or the Fama and French (2007) taste model, 
which predicts that nonsocially responsible companies 
that are out of favor by investors will earn higher 
expected returns. For ESG investing, although theories 

suggest that green assets should not earn higher returns 
in equilibrium, they can have prolonged periods of bet-
ter returns when aggregate tastes are changing (Pástor 
et al. 2021). Our framework is flexible enough to be 
calibrated to asset-pricing models that account for the 
underlying financial market variables driving ESG 
returns, such as good versus bad economic times (Bansal 
et al. 2022) and market-wide shifts in attention to climate 
change (Lo et al. 2022a, Pástor et al. 2022). Finally, the 
causal mechanism for the meme stock phenomenon is 
given by the price-impact model in Online Appendix 
A.7 or the Pedersen (2022) model of influencers and 
thought leaders in social networks.

7.3. Nonstationarities and Estimating r
The specific motivation underlying each impact invest-
ment also plays an important role in determining the 
key parameter ρ, the correlation between the impact fac-
tor X and returns. In particular, such motivation is often 
nonstationary, which implies that ρ�may be time vary-
ing. The dynamics of such time variation are related to 
changes in the most pressing issues facing society at 
each point in history. For example, the idea that portfolio 
managers should include company-specific carbon 
risk exposures in their investment process was greeted 
with skepticism in a not-so-distant conference in 2010 
(Andersson et al. 2016), in contrast to today’s 5,301 
United Nations Principles for Responsible Investment 
(UNPRI) signatories.48 In this adaptive process (Lo 2004, 
2017), the correlation between a climate impact factor 
and returns rises as the amount of assets under manage-
ment and the number of products that are attempting to 
take advantage of a given X increase over time and even-
tually stabilizes as the size of the new sector reaches a 
steady state. Even in the absence of any direct physical 
relationship between a company’s carbon emissions and 
its business prospects, if enough investors care about the 
company’s carbon footprint because of general environ-
mental concerns, this factor can have an impact on the 
company’s returns, thereby inducing a risk premium 
and consequently, a nonzero ρ.

Because impact investing is so often associated with 
nonpecuniary preferences of investors and because 
behavioral economists and other social scientists have 
documented the fact that individual preferences change 
over time and across contexts, nonstationarity is espe-
cially relevant for such investments. Therefore, attempt-
ing to estimate ρ�using decades of historical data is 
unlikely to be fruitful given the shift in these correlations 
over time.49 A more useful approach is either to estimate 
ρ�using a structural model based on the specific impact 
measure or to apply time series methods that are more 
robust to nonstationarities, such as rolling-window esti-
mators, regime-switching models, or machine-learning 
techniques, which are often more adaptive than stan-
dard statistical estimators.
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A separate but closely related issue involves the time 
horizon over which correlation is measured. In our theo-
retical analysis, ρ�is assumed to be a fixed constant, but 
in practice, ρ�is not only time varying but also horizon 
dependent. For some types of impact, the horizon is 
short, such as the price-impact example of Section 6.5, so 
correlations can be measured using daily or monthly 
returns. However, for other types of impact, the horizon 
can be multiple years, such as the case with the Cystic 
Fibrosis Foundation (Section 6.1). These two extremes 
reflect the specific mechanisms of impact. In the case of 
meme stocks, impact occurs trade by trade, whereas in 
the case of biomedical innovation, impact occurs as drug 
candidates reach clinical-trial milestones, which can take 
over a decade. Therefore, when applying the framework 
of Section 3 to a given context, a necessary prerequisite is 
a clear understanding of the nature of the impact being 
sought and over the specific time span that it is likely to 
be observed. Additionally, when disclosing the financial 
impact of such an investment, it would be prudent to 
disclose the estimated correlation ρ�over multiple hori-
zons in the same way that retail investors are now given 
one-, three-, and five-year historical returns whenever 
available to evaluate current and potential future invest-
ments. Correlations over different horizons can reveal 
important nonstationarities as well as other structural 
and economic features about the impact that investors 
are hoping to obtain, and they can also help to set expec-
tations as to when such impact might be realized.

8. Conclusion
In this article, we propose a new framework to quantify 
the financial value added/subtracted of impact invest-
ing. Using the theory of induced order statistics, we 
show that the correlation between the impact factor, X, 
and the excess returns of individual securities deter-
mines the excess return of the impact portfolio. The 
impact factor provides a ranking and selection mecha-
nism for portfolio construction, and its correlation with 
a provides additional information that can be used to 
achieve better risk-adjusted returns as well as impact.

In practice, we require estimates of a to measure the 
correlation between X and a, which is demonstrated 
empirically in two projects involving a wide range of 
ESG metrics (Berg et al. 2022c) and environmental 
metrics, such as carbon emission (Lo et al. 2022a). Then, 
why not just estimate a and stop there? The reality is 
that not all investors have access to good estimates of a, 
not to mention the alphas of more sophisticated impact 
portfolios. Our framework provides a much lower 
(one-)dimensional quantity (ρ), compared with a, to be 
estimated either based on historical data or economic 
theories. It also provides a simple and unified quantity 
that asset managers can disclose to investors. In this 
sense, this correlation is analogous to the CAPM’s 

market beta, which reduces to the correlation between 
individual security returns and market returns when 
they are both standardized to have unit variances.

The ability to quantify the distribution of alphas for 
impact-sorted securities allows us to form Treynor–Black 
portfolios to exploit the alphas optimally. This is particu-
larly relevant for the investment management industry as 
it strives to bridge the gap between traditional investment 
products and the growing demand for impact invest-
ments. Regardless of the nature of the desired impact— 
whether it is biomedical innovation, promoting ESG, 
avoiding socially unsavory businesses, or attempting to 
achieve certain price objectives—our framework can be 
used to construct the most efficient way of investing in 
impact portfolios. Additionally, by comparing the prop-
erties of impact portfolios on the Treynor–Black supereffi-
cient frontier with those of nonimpact investments after 
accounting for investor-specific constraints, we have a 
concrete metric of the reward (or cost) of impact investing 
as demonstrated in the five examples.

In fact, an investment’s alpha can itself be influenced 
by its impact as demonstrated in our example of venture 
philanthropy. If the Cystic Fibrosis Foundation was not 
able to achieve the impact to develop effective drugs for 
cystic fibrosis, it is unlikely that they could have gener-
ated any meaningful return. In this sense, there is an 
endogenous and likely a causal relationship between X 
and alpha. Another example of realizing alpha by 
achieving impact is activist investing, for which it has 
been empirically documented that activists may help 
their portfolio companies improve production efficiency 
(Brav et al. 2015), long-term fundamentals (Bebchuk et al. 
2015), and stock performance (Dimson et al. 2015).

More broadly, our framework is relevant not just to 
impact proxies, such as SRI and ESG metrics, but applies 
to any characteristics that may be correlated with excess 
returns. This includes traditional factors, such as value, 
quality, size, and momentum, as well as hundreds of 
new factors and anomalies in the “Factor Zoo” dis-
cussed in the recent literature (Harvey et al. 2016, Feng 
et al. 2020, Hou et al. 2020). From this perspective, our 
model has defined a measure for the alpha of any factor.

Our framework may also help inform regulators and 
policy makers on the most appropriate tools to encourage 
investments with more socially-aware goals. Not all types 
of impact investing are created equal. When they create 
positive excess returns, one must understand what drives 
the initial undervaluation in the first place and what risks 
are preventing investors from participating in these 
opportunities. In the case of venture philanthropy in bio-
medical research and development, for example, it is cru-
cial to develop new tools to mitigate risks from low 
probabilities of success, long time horizons, and large cap-
ital requirements (Fagnan et al. 2013, Thakor et al. 2017).

On the other hand, when impact investing incurs a 
cost to investors, at the very least it suggests the need for 
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more explicit investor disclosures. It may also justify cer-
tain incentives and industrial policies, such as tax bene-
fits and R&D grants to encourage the growth of these 
socially beneficial firms and organizations. One case in 
point is the area of green energy where for example, 
Baker et al. (2022) document a lower yield for green 
bonds compared with otherwise equivalent bonds. Gov-
ernments around the world are designing policies to 
help grow industries, such as clean energy and electric 
vehicles. Even if they incur a cost in the short to medium 
term, as a society we need to invest in them if we value 
greater sustainability.

Indeed, our analysis underscores the fact that finance 
need not be a zero-sum game. Although impact invest-
ing does imply sacrificing excess returns in certain situa-
tions, in other situations it is, in fact, possible to achieve 
impact and attractive financial returns at the same time. 
We hope to apply our framework more broadly not only 
to allow portfolio managers to satisfy their fiduciary 
duties but also, to achieve the more ambitious goal of 
doing well by doing good on behalf of investors.
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Endnotes
1 Impact investing has been used to refer specifically to these invest-
ments (Barber et al. 2021), but we use the term “impact investing” 
more broadly in this article.
2 See https://www.texasattorneygeneral.gov/sites/default/files/ 
images/executive-management/BlackRock%20Letter.pdf (accessed 
December 15, 2022).

3 See 9 U.S. Code §1109—Liability for breach of fiduciary duty.
4 For standardized returns with unit variances, the market beta is 
simply the correlation between security returns and market returns.
5 There is a substantial literature documenting the divergence of 
ESG ratings for the same firms (Dortfleitner et al. 2015, Semenova 
and Hassel 2015, Berg et al. 2022a).
6 See, for example, the “luxury-good effect” of Bansal et al. (2022).
7 See, for example, Geczy et al. (2021) and Madhavan et al. (2021).
8 Other theoretical work on sustainable investing includes Heinkel 
et al. (2001), Adler and Kritzman (2008), Friedman and Heinle (2016), 
Luo and Balvers (2017), Albuquerque et al. (2019), Chen and Mussalli 
(2020), Berk and van Binsbergen (2021), Goldstein et al. (2021), Idzorek 
et al. (2021), Sorensen et al. (2021), and Zerbib (2022).
9 For example, Bebchuk et al. (2013) document the disappearance of 
a return premium associated with highly rated corporate gover-
nance during an earlier period, and Bansal et al. (2022) find a 
“luxury-good effect,” both of which suggest time-dependent perfor-
mance of stocks as a function of their ESG ratings.
10 In their framework, the standard mean-variance tangency portfo-
lio has the highest Sharpe ratio among all portfolios, and restricting 
portfolios to have any ESG score other than that of the tangency 
portfolio must yield a lower Sharpe ratio (Pedersen et al. 2021, p. 
573).
11 See, for example, Chen et al. (1986), Fama and French (1993, 
2015), Jegadeesh and Titman (1993), Jagannathan and Wang (1996), 
Lettau and Ludvigson (2001), Pástor and Stambaugh (2003), Yogo 
(2006), Adrian et al. (2014), Hou et al. (2015), and He et al. (2017).
12 See, for example, Fama and MacBeth (1973), Ferson and Harvey 
(1991), Shanken (1992), Lewellen et al. (2010), Connor et al. (2012), 
Bai and Zhou (2015), Gagliardini et al. (2016, 2019), Feng et al. 
(2020), Gu et al. (2020), and Raponi et al. (2020).
13 Proofs of all propositions are provided in the online appendix.
14 In this baseline portfolio selection problem, investors do not have 
information on the impact of individual securities or X defined in 
the next section.
15 An alternative interpretation adopted by, for example, Adler and 
Kritzman (2008) is that certain investors have skills that yield alphas 
private to themselves.
16 By private information, we mean that the alphas are assumed to 
be unobservable by investors. Without the constraint, S, investors 
have no way to select securities with positive alphas. In this sense, 
the constraint is, in fact, a mechanism for alpha selection and there-
fore, contains valuable information.
17 The term was coined by Bhattacharya (1974) to distinguish 
between random variables ranked by their own realized values ver-
sus random variables ranked by the realizations of related random 
variables. These indirectly ranked statistics are also referred to as 
concomitants of the order statistic, Xi:N (David 1973). Lo and MacK-
inlay (1990) applied these same statistical tools to quantify data- 
snooping biases in testing financial asset-pricing models.
18 Pástor and Stambaugh (1999) also model this randomness as a 
measure of mispricing uncertainty.
19 In fact, Grossman and Stiglitz (1980) have argued that the pres-
ence of occasional mispricings is a prerequisite for achieving infor-
mationally efficient markets; otherwise, no one has any incentive to 
gather information and incorporate it into market prices.
20 See also Grinold and Kahn (1999).
21 When no alpha or mispricing estimates are available, the optimal 
portfolio is given by the traditional mean-variance analysis.
22 See also Grinold and Kahn (1999, chapter 6, 2019, chapters 4 and 
5) for recent developments.
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23 In the Grinold (1989) framework, breadth is defined as the num-
ber of independent bets of a strategy in a given year. In our context, 
breadth is determined by the number of available assets in the uni-
verse. Our framework can also be regarded as a generalization of 
the FLAM because the impact portfolio only uses the rank informa-
tion in X.
24 This is an innocuous assumption, and we show later via simula-
tion that cross-sectional heterogeneity in idiosyncratic volatilities 
does not affect our conclusions.
25 We set the individual security weights of the impact portfolios to 
be always positive by convention from the perspective of long-only 
investors.
26 For example, using several factor models, Pástor and Stambaugh 
(1999) estimate σα�to be between 0% and 10% with a Bayesian 
framework (depending on different priors) for 1,994 stocks.
27 In particular, investors can construct portfolios by maximizing 
the expected utility that adds a term for portfolio ESG on top of tra-
ditional mean variance of security returns. Alternatively, they can 
maximize the expected utility subject to a constraint that the portfo-
lio ESG is higher than a preset threshold. See, for example, Pástor 
et al. (2021) and Pedersen et al. (2021).
28 We thank the associate editor for pointing out this interesting 
connection.
29 The correspondence between return factor models and SDF factor 
models is initially because of Ross (1978) and Dybvig and Ingersoll 
(1982). The example given by Cochrane (2009, section 6.3) illustrates 
this connection in its simplest form when asset returns are written 
in excess of the risk-free rate, which we denote as Re following 
Cochrane (2009). Given a return factor model E[Re] � β′E[λ], one 
can always find an SDF, m, such that m satisfies m � 1+ b′λ�and 
0 � E[mRe], where b is given by the equation E[λ] ��Var[λ]b. 
Nonetheless, m is not unique because one can always add to m any 
random variable orthogonal to returns.
30 See https://fred.stlouisfed.org/series/GS5/.
31 Using a Bayesian framework, Pástor and Stambaugh (1999) esti-
mate the posterior σα�to be between 0% and 10% (depending on dif-
ferent priors) for 1,994 stocks using several factor models. Given 
that private biopharma companies likely have larger mispricings 
than the average stock, we assume that the cross-sectional standard 
deviation of a is σα � 10%, and the CF Foundation’s investment in 
Vertex ranks at the top 1% of N � 10,000 securities based on a rare 
disease impact factor. If we assume, instead, that σα � 20%, the 
implied correlation range is [18%,43%].
32 Sematech consisted of only U.S. companies during its initial 
years. In the late 1990s, members from Asia and Europe start to join 
Sematech in a limited capacity, and Sematech completed its first 
year of operations as a unified global consortium in 2000. Therefore, 
we choose our sample period to be 1975–1999, which covers 
roughly the 12 years before and after the formation of Sematech. 
Returns are winsorized at 15% each side to reduce the impact of 
outliers.
33 We require at least six valid monthly returns both before and 
after the formation of Sematech for each firm to be included. The 11 
Sematech members are AT&T Microelectronics, Advanced Micro 
Devices, International Business Machines, Hewlett-Packard, Intel, 
LSI Logic, Micron Technology, Motorola, National Semiconductor, 
Rockwell International, and Texas Instruments.
34 We assume that the cross-sectional standard deviation of a is 
σα � 20% and that the universe of firms in the semiconductor indus-
try is approximately 200. If we assume, instead, that σα � 10%, the 
average implied correlation is 51%, with a range of [2:8%, 99%].
35 Hong and Kacperczyk (2009) report 193 sin stocks in their selec-
tion, and Blitz and Fabozzi (2017) report that sin stocks are about 

2.5% of the universe. We calibrate to these parameters when deter-
mining the quantiles of the induced order statistics in, for example, 
Equation (A.2) in the online appendix.
36 We use an intermediate value based on the Pástor and Stam-
baugh (1999) estimate of σα�(between 0% and 10% for 1,994 stocks). 
Results for other values of σα�follow trivially. Note that different 
values for σα�lead to different estimates of ρ�but not the final esti-
mates of the cost of avoiding sin stocks because the expected alpha 
in Equation (A.2) in the online appendix, for example, is invariant 
of the product of the two (ρσα).
37 Blitz and Fabozzi (2017) use monthly returns. For U.S. data in 
1963–2016, the authors report a nonsignificant monthly excess 
return of 0.10%. This number becomes negative when restricted to 
data after 1990.
38 In total, 2,083 green U.S. municipal bonds are used in the sample 
compared with 643,299 ordinary bonds.
39 We assume the standard deviation of cross-sectional alpha is 
σα � 1% because of smaller magnitudes for bond returns. This corre-
sponds to a lower value in the range of estimates by Pástor and 
Stambaugh (1999) (between 0% and 10% in the stock market). Simi-
lar to our results for sin stocks, different values for σα�lead to differ-
ent estimates of ρ�but not the final estimates of the ESG alpha.
40 This indicates stocks ranked by the greenness scores in the top 
third minus those in the bottom third.
41 In particular, this estimate corresponds to a portfolio constructed 
from ranking stocks based on the negative value of the logarithm of 
scope 1 carbon emissions.
42 Note that these prices are unadjusted for the subsequent four-to- 
one stock split that GME underwent on July 22, 2022.
43 In fact, GME’s revenue has been declining since 2017, and its 
earnings per share has been negative since 2018.
44 For example, on July 6, 2021, GameStop announced an expansion 
of its fulfillment center through the leasing of a 530,000-square foot 
facility in Reno, Nevada. By September 2021, the company hired an 
additional 500 employees, and in November 2021, the company 
secured a $500 million global asset-based revolving credit facility, 
which was oversubscribed and which replaced its existing $420 mil-
lion facility due in November 2022 (in addition to delivering 
enhanced liquidity, the new facility offered reduced borrowing 
costs, lighter covenants, and more flexibility).
45 What constitutes a “short” period of time is clearly subjective 
and context dependent; as of December 2, 2022, GME’s closing price 
was $27.52, more than 10 times higher than the $2.62 closing price 
on October 30, 2020 (note that these are split-adjusted prices).
46 See the Securities Exchange Act of 1934, Section 9; the Sherman 
Act; and the Commodity Exchange Act.
47 It is known that testing an asset-pricing model against an unspe-
cified alternative results in poor power (see, for example, MacKin-
lay 1987, Campbell et al. 1997, p. 261). From the Bayesian 
perspective, we need at least two models to update their posteriors 
with data. Without a concrete alternative model, the likelihood 
P(data | not H0) is ill defined.
48 See https://www.unpri.org/signatories/signatory-resources/ 
signatory-directory (accessed December 2, 2022).
49 For example, Lo et al. (2022a) and Pástor et al. (2022) show that it 
is important to account for shocks in preference shifts in order to 
get correlations that are more likely to persist in the future.
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