
Neural Processing Letters
https://doi.org/10.1007/s11063-021-10597-5

Subspace Clustering with Block Diagonal Sparse
Representation

Xian Fang1,2 · Ruixun Zhang3 · Zhengxin Li1,2 · Xiuli Shao1,2

Accepted: 13 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Structured representation is of remarkable significance in subspace clustering. However,
most of the existing subspace clustering algorithms resort to single-structured representation,
which may fail to fully capture the essential characteristics of data. To address this issue,
a novel multi-structured representation subspace clustering algorithm called block diagonal
sparse representation (BDSR) is proposed in this paper. It takes both sparse and block diagonal
structured representations into account to obtain the desired affinity matrix. The unified
framework is established by integrating the block diagonal prior into the original sparse
subspace clustering framework and the resulting optimization problem is iteratively solved
by the inexact augmented Lagrange multipliers (IALM). Extensive experiments on both
synthetic and real-world datasets well demonstrate the effectiveness and efficiency of the
proposed algorithm against the state-of-the-art algorithms.

Keywords Subspace clustering · Multi-structured representation · Sparse structure · Block
diagonal structure · Spectral clustering

1 Introduction

Subspace clustering, also known as subspace segmentation, aims to partition a set of data
samples approximately drawn from a union of linear subspaces [1]. It has beenwidely applied
in many fields, such as image clustering [2–5], image classification [6,7], image compres-
sion [8,9], video separation [10] and video summarization [11]. Among the popular subspace
clustering methods, the spectral-type based methods are extremely promising [12], which
attracts the increasing attention of researchers. These kinds of methods typically perform
subspace clustering in two stages, that is, first learning affinity matrix that encodes the sub-
space membership information from the given data, and then applying spectral clustering on
the learned affinity matrix to obtain the final clustering result.
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Up to now, three dominant branches of structured representation have been designed
and embedded in subspace clustering algorithms, i.e., sparse representation, low-rank rep-
resentation and block diagonal representation. Accordingly, the fundamental algorithms are
referred as sparse subspace clustering (SSC) [13,14], low-rank representation (LRR) [15,16]
and block diagonal representation (BDR) [17], respectively. In general, the former two build
the affinity matrix by implicitly seeking the sparsest or the lowest rank linear representation
of each sample relative to the rest samples or the entire data samples, whereas the latter
one explicitly pursues block diagonal structure to calculate the affinity matrix. On the basis
of these algorithms, lots of improved algorithms are constantly emerging [18–29]. When
the observed data samples are insufficient or contaminated by an overwhelming amount of
noises, latent low-rank representation (LLRR) [30] is brought forward. Least squares regres-
sion (LSR) [31] is implemented to encourage the grouping effect, where ridge regression
may have similar behavior as LRR in the context of statistics. Non-linear latent space sparse
subspace clustering (NLS3C) [32] is devised as the kernel extension of SSC to complex
non-linear manifold learning. In view of the influence of symmetric components, low-rank
representation with symmetric constraint (LRRSC) [33] is put forward. Discriminative and
coherent subspace clustering (DCSC) [34] is modeled, which enforces the coherence and
discrimination of the affinity matrix as well as the label. Symmetry constrained latent low
rank representation with converted nuclear norm SLLRRC [35] is presented by introduc-
ing a kind of converted nuclear norm and integrating strategy of the symmetric constraint.
Although encouraging performance has been met, the algorithms mentioned above are still
challenging due to the lack of reliable guidance for global characteristics identification. In
other words, they just focus on single-structured representation, and none of them are able
to comprehensively understanding the diversity of characteristics. To this end, several multi-
structured representation subspace clustering algorithms have been proposed in recent years.
Correlation adaptive subspace segmentation (CASS) [36] is brought forward, which uses
the trace Lasso to adaptively interpolate SSC and LSR. Low-rank sparse subspace cluster-
ing (LRSSC) [37] is implemented for the sparsity and low-rankness of the representation.
Implicit block diagonal low-rank representation (IBDLR) [38] is devised by combining the
block diagonal representation and low-rank representation. As a matter of fact, the multi-
structured representation exploits intrinsic properties, i.e., complementarity and consistency,
among different structures to jointly enhance the generalization ability of learning models.

Motivated by the success of multi-structured representation for subspace clustering, we
investigate the joint structure of the sparse and block diagonal representations. Devoted
to taking advantage of the flexible calculation of sparse structure and the real distribution
of block diagonal structure, we therefore propose the block diagonal sparse representation
(BDSR) in this paper. The proposed algorithm is capable of learning the desired affinity
matrix, which enjoys both sparse and block diagonal structures, yielding reliable clustering
result. The strength of the algorithm is that it explores the internal association of data from
two aspects of complementarity and consistency without bringing extra computing costs.
In addition, we utilize the inexact augmented Lagrange multipliers (IALM) [39] to derive
closed form solution to the resulting optimization problem, hence the algorithm is executed
simply and quickly. The main contributions of this paper can be summarized below.

(1) We propose a novel multi-structured representation subspace clustering algorithm by
simultaneously incorporating the sparse constraint and block diagonal prior.

(2) We develop an optimization strategy for the minimization problem of the proposed algo-
rithm. In this approach, the closed form solutions of all subproblems are derived.
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(3) We conduct experiments on a large number of benchmark datasets, and the experimental
results demonstrate the superiority of the proposed algorithm over other state-of-the-art
algorithms.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related
works. Section 3 elaborates on the details of the proposed algorithm and the corresponding
solving method. Section 4 gives the experimental results followed by concluding remarks in
Sect. 5.

2 RelatedWorks

2.1 Notations

All matrices, vectors and scalars used in this paper are shown in boldface uppercase, boldface
lowercase and lowercase letters, respectively. For instance, M is a matrix, v is a vector and
s is a scalar. In particular, I is used to denote the identity matrix, and the all zero and all
one vector or matrix are denoted as 0 and 1, respectively. MT and M−1 denote the transpose
and the inverse of M, respectively, while vT is the transpose of v. Diag(v) converts v into a
diagonal matrix whose i-th diagonal entry being the i-th entry of v, while diag(M) is a vector
with its i-th entry being the i-th diagonal entry of M. If all entries of M are non-negative,
we denote M ≥ 0. If M is positive semi-definite, we denote M � 0. In addition, tr(M) and
sign(M) denote the trace function and the sign function of M, respectively. The only used
vector norm is the �2 norm, denoted by ‖v‖2. Some matrix norms are also be used, including
the �0 norm, the �1 norm, the spectral norm, the Frobenius norm and the �∞ norm, denoted
by ‖M‖0, ‖M‖1, ‖M‖2, ‖M‖F and ‖M‖∞, respectively. For M and N , we denote N � M
if M − N � 0. In addition, 〈M, N〉 and M 	 N denote the inner product and the Hadamard
product between M and N , respectively.

2.2 Sparse Subspace Clustering

Suppose that there is a set of high dimensional data samples X = [x1, x2, . . . , xn] ∈ R
d×n ,

each column of which is drawn from a union of k independent subspaces {Si }ki=1 with
unknown dimensions, where d is dimension of samples and n is number of samples. The task
of subspace clustering is to divide the samples according to the subspaces they are drawn
from.

Sparse subspace clustering (SSC) relies on the fact that each sample can be expressed as a
sparse linear combination of other data samples. The minimization problem of SSC is given
as

min
Z,E

‖Z‖0 + λ‖E‖2F s.t. X = XZ + E, diag(Z) = 0 (1)

where Z ∈ R
n×n is the coefficient matrix, E ∈ R

d×n is the noise matrix and λ ∈ (0,∞)

is the trade-off parameter. SSC wants Z to be sparse and Z is expected not to be the trivial
solution. The problem in Eq. (1) is essentially an NP-hard problem, the tractable relaxation
is given as

min
Z,E

‖Z‖1 + λ‖E‖2F s.t. X = XZ + E, diag(Z) = 0 (2)
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Definition 1 [15] For a collection of subspaces {Si }ki=1, it is said to be independent if and
only if the sum of the dimensions of all elements is equal to the dimension of their direct
sum.

In theory, it is proved that the affinitymatrix A = (|Z|+|Z|T)/2 obtained by SSC satisfies
the block diagonal property when the underlying subspaces are independent. Such block
diagonal property, however, is often fragile and weak. Therefore, block diagonal constraint
is actually helpful as prior knowledge to alleviate this situation.

2.3 Block Diagonal Regularizer

For accurate clustering, the graph Laplacian matrix should represent several connected com-
ponents. It is absolutely compatible to require the affinity matrix to be block diagonal.

Without loss of generality, it can be assumed that X = [X1, X2, . . . , Xk] is ordered,where
X i ∈ R

d×ni denotes the data samples belong to Si (i = 1, 2, . . . , k) and
∑k

i=1 ni = n.

Definition 2 [17] For any affinity matrix A ∈ R
n×n , the k-block diagonal regularizer is

defined as

‖A‖ k =
n∑

i=n−k+1

ϕi (LA) (3)

where LA is the Laplacian matrix of A defined as LA = Diag(A1) − A and ϕi (LA) denote
the i-th eigenvalue of LA in decreasing order.

Theorem 1 [38] Let ϕi (·) be the i-th eigenvalue of a certain square matrix in decreasing
order, LA ∈ R

n×n and LA � 0, then we have

n∑

i=n−k+1

ϕi (LA) = min
B

〈LA, B〉 s.t. 0 � B � I, tr(B) = k (4)

where B ∈ R
n×n.

Intuitively, the block diagonal regularizer is a soft regularizer for imposing block diagonal
constraint. Based on the theorem above, the block diagonal regularizer can be transformed
into a minimization surrogate.

3 Block Diagonal Sparse Representation

3.1 Problem Formulation

With the goal of providing a new unified optimization framework, the sparse constraint and
block diagonal prior are combined for collaborative subspace clustering,which is called block
diagonal sparse representation (BDSR). Different from most subspace clustering algorithms
which only focus on single-structured representation, the algorithm takes into account the
multi-structured representation of both sparse and block diagonal. Besides, the symmetry
constraint is introduced to ensure the weight consistency for each pair of data samples, while
retaining the geometrical subspace structure of the data, so that highly correlated data points of
subspaces can be represented together. Compared with the current multi-structured subspace
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clustering algorithms, the algorithm can better recover the subspace structure hidden in the
high dimensional dataset and obtain the more exact segmentation effect. The minimization
problem of BDSR is given as

min
Z

1

2
‖X − XZ‖2F + λ1‖Z‖1 + λ2‖A‖ k

s.t. A = |Z| + |Z|T
2

(5)

where λ1 ∈ (0,∞) and λ2 ∈ (0,∞) are two trade-off parameters, which balances the impor-
tance of each term. The first term can be treated as the regularization term, the second term
promotes the sparsity of the coefficient matrix, while the third term is adopted to guarantee
the block diagonal structure of the affinity matrix.

Merging Eq. (3) and Eq. (4) into Eq. (5), then the minimization problem can be reformu-
lated as

min
Z,B

1

2
‖X − XZ‖2F + λ1‖Z‖1 + λ2〈Diag(A1) − A, B〉

s.t. A = |Z| + |Z|T
2

, 0 � B � I, tr(B) = k (6)

3.2 Optimization Procedure

Since each term in Eq. (6) is closely related to one of the variables Z to be optimized, the
problem in which is non-convex. Fortunately, it can be approximatively solved by the inexact
augmented Lagrange multipliers (IALM). By adding two auxiliary variables P ∈ R

d×n and
Q ∈ R

n×n , Eq. (6) can be further reformulated as

min
Z,B,P,Q

1

2
‖P‖2F + λ1‖Q‖1 + λ2〈Diag(A1) − A, B〉

s.t. A = |Z| + |Z|T
2

, 0 � B � I, tr(B) = k,

P = X − XZ, Q = Z (7)

The augmented Lagrange function of Eq. (7) can be written as

L(Z, B, P, Q,Y1,Y2, μ)

= 1

2
‖P‖2F + λ1‖Q‖1 + λ2〈Diag(A1) − A, B〉

+tr(YT
1 (X − XZ − P)) + tr(YT

2 (Z − Q))

+μ

2
(‖X − XZ − P‖2F + ‖Z − Q‖2F )

= 1

2
‖P‖2F + λ1‖Q‖1 + λ2〈Diag(A1) − A, B〉

+H(Z, P, Q,Y1,Y2, μ) − 1

2μ
(‖Y1‖2F + ‖Y2‖2F ) (8)

where Y1 ∈ R
d×n and Y2 ∈ R

n×n are two Lagrange multipliers, μ ∈ (0,∞) is the penalty
parameter, A = (|Z| + |Z|T)/2, 0 � B � I , tr(B) = k and H(Z, P, Q,Y1,Y2, μ) =
μ/2(‖X − XZ − P + Y1/μ‖2F + ‖Z − Q + Y2/μ‖2F ).

123



X. Fang et al.

Due to the non-smoothness of the problem in Eq. (8) with respect to variables Z, B, P
and Q, we optimize it by alternatively minimizing each variable while fixing the others for
each iteration. The key challenge of the whole optimization procedure lies in the following
four subproblems.

Z-subproblem: Updating Z with others fixed. The subproblem of Eq. (8) with respect to
Z is

Z = argmin
Z

λ2〈Diag(A1) − A, B〉 + H(Z, P, Q,Y1,Y2, μ)

s.t. A = |Z| + |Z|T
2

(9)

Like [40], Eq. (9) can be reformulated as

Z(t+1) = argmin
Z

λ2〈Diag(A1) − A, B〉 + μη

2
‖Z − Z(t)‖2F

+〈�ZH(Z(t), P, Q,Y1,Y2, μ), Z − Z(t)〉
= argmin

Z

λ2

μη
〈Diag(A1) − A, B〉 + 1

2
‖Z − (Z(t) + 1

η
(XT

(X − XZ(t) − P + Y1

μ
) − (Z(t) − Q + Y2

μ
)))‖2F

s.t. A = |Z| + |Z|T
2

(10)

where�ZH(Z(t), P, Q,Y1,Y2, μ) denotes the partial differential ofH to Z, η = ‖X‖22 and
t is number of iterations. Note that the term 〈Diag(A1) − A, B〉 has |Z| but not Z, while the
term ‖Z−(Z(t)+1/η(XT(X−XZ(t)− P+Y1/μ)−(Z(t)− Q+Y2/μ)))‖2F is the opposite.
As a result, the entries of Z must share the same sign as the ones of Z(t) + 1/η(XT(X −
XZ(t) − P +Y1/μ)− (Z(t) − Q+Y2/μ)). Let Z = Ẑ	 sign(Z(t) +1/η(XT(X − XZ(t) −
P + Y1/μ) − (Z(t) − Q + Y2/μ))), then Ẑ is the solution to

Ẑ
(t+1) = argmin

Z

λ2

μη
〈Diag(A1) − A, B〉 + 1

2
‖Z − |(Z(t) + 1

η
(XT

(X − XZ(t) − P + Y1

μ
) − (Z(t) − Q + Y2

μ
)))|‖2F

s.t. A = Z + ZT

2
, Z ≥ 0 (11)

It is obvious that Eq. (11) is equivalent to

Ẑ
(t+1) = argmin

Z

1

2
‖Z − (|(Z(t) + 1

η
(XT(X − XZ(t) − P + Y1

μ
)

−(Z(t) − Q + Y2

μ
)))| − λ2

2μη
(DB + DT

B))‖2F
s.t. Z ≥ 0 (12)

where DB = diag(B)1T − B. Thus, Eq. (12) has the closed form solution as

Ẑ
(t+1) = max(0, |(Z(t) + 1

η
(XT(X − XZ(t) − P + Y1

μ
) − (Z(t) −

Q + Y2

μ
)))| − λ2

2μη
(DB + DT

B)) (13)
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Solving out Ẑ
(t+1)

, then Z(t+1) can be recovered by

Z(t+1) = Ẑ
(t+1) 	 sign(Z(t) + 1

η
(XT(X − XZ(t) − P + Y1

μ
) −

(Z(t) − Q + Y2

μ
))) (14)

B-subproblem: Updating B with others fixed. The subproblem of Eq. (8) with respect to
B is

B = argmin
B

〈Diag(A1) − A, B〉
s.t. 0 � B � I, tr(B) = k (15)

where A = (|Z| + |Z|T)/2. Thus, Eq. (15) can be solved in a closed form with

B = GGT (16)

where G ∈ R
n×k , the column vectors of it are composed of the k eigenvectors associated

with the smallest k eigenvalues of the term Diag(A1) − A.
P-subproblem: Updating P with others fixed. By removing the irrelevant terms with

respect to P in Eq. (8), we deal with the subproblem as

P = argmin
P

1

2
‖P‖2F + μ

2
‖X − XZ − P + Y1

μ
‖2F (17)

Eq. (17) is strongly convex, which can be directly solved. Taking the derivation with respect
to P , we have

P = 1

1 + μ
(μX − μXZ + Y1) (18)

Q-subproblem: Updating Q with others fixed. We only preserve the relevant terms with
respect to Q in Eq. (8) and deal with the subproblem as

Q = argmin
Q

λ1‖Q‖1 + μ

2
‖Z − Q + Y2

μ
‖2F (19)

It is obvious that Eq. (19) is equivalent to

Q = argmin
Q

λ1

μ
‖Q‖1 + 1

2
‖Q − (Z + Y2

μ
)‖2F (20)

Eq. (20) can be solved by the shrinkage operator, which has the closed form solution as

Q = max(0, |Z + Y2

μ
| − λ1

μ
1) 	 sign(Z + Y2

μ
) (21)

After Z, B, P and Q are updated, the Lagrange multipliers Y1 and Y2, and penalty
parameter μ can be easily updated by the following rule

⎧
⎪⎨

⎪⎩

Y (t+1)
1 = Y (t)

1 + μ(X − XZ − P)

Y (t+1)
2 = Y (t)

2 + μ(Z − Q)

μ(t+1) = min(μmax, ρμ(t))

(22)
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where μmax and ρ denote the maximum value of μ and the learning rate, respectively. The
updating process is terminated when the convergence conditions are satisfied, i.e., ‖X −
XZ − P‖∞ < ε and ‖Z − Q‖∞ < ε, where ε denotes the preset threshold.

The detailed procedure to solve the problem stated in Eq. (6) by IALM is outlined in
Algorithm (1). Once the coefficient matrix Z is obtained, the affinity matrix A can be further
defined to perform certain spectral clustering methods, such as normalized cuts (NCut) [41].
The complete procedure of the BDSR algorithm is outlined in Algorithm (2).

Algorithm 1: Solving the problem in Eq. (6) by IALM.
Input: Data matrix X , parameters λ1, λ2.
Output: Coefficient matrix Z .

1 Initialize: P(0) = Y (0)
1 = 0, Z (0) = B(0) = Q(0) = Y (0)

2 = 0, μ(0) = 10−2, μmax = 106, ρ = 1.1,

ε = 10−6 and t = 0.
2 while not converged do
3 Fix the others and update Z (t+1) by Eq. (14);

4 Fix the others and update B(t+1) by Eq. (16);

5 Fix the others and update P(t+1) by Eq. (18);

6 Fix the others and update Q(t+1) by Eq. (21);

7 Update Y (t+1)
1 , Y (t+1)

2 and μ(t+1) by Eq. (22);
8 t ← t + 1;
9 end

Algorithm 2: The BDSR algorithm.
Input: Data matrix X , number of subspaces k, parameters λ1, λ2.
Output: Clustering result.

1 Obtaining the coefficient matrix Z using Algorithm (1);

2 Constructing the affinity matrix A = (|Z| + |Z|T)/2;
3 Applying spectral clustering to A and segmenting the data samples into k clusters;

3.3 Computational Complexity Analysis

The running time of BDSR is mainly consumed by updating the variables Z, B, P and Q.
Updating of Z involves both matrix multiplication of d × n matrix and n × n matrix and
matrix addition of two n × n matrices, which has the complexity of O(dn2 + n2) in each
iteration. Updating of B involves the eigenvalue decomposition operation of n × n matrix,
i.e., matrix multiplication of n × k matrix and k × n matrix, which has the complexity of
O(kn2) in each iteration. Updating of P involves matrix multiplication of d × n matrix
and n × n matrix, which has the complexity of O(dn2) in each iteration. Updating of Q
involves matrix addition of two n × n matrices, which has the complexity of O(n2) in each
iteration. In summary, the computational complexity of each iteration of BDSR is about
O(2dn2 + kn2 + 2n2). In practice, d � k holds for most cases. Therefore, the overall time
complexity of BDSR can be roughly considered as O(tdn2).
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3.4 Convergence Analysis

Theorem 2 Let F(Z, B, P, Q) be the objective function related to variables Z, B, P and
Q, and G(B) be the indicator function of constraint condition related to variable B in Eq.
(7), we can gain

F(Z(t+1), B(t+1), P (t+1), Q(t+1)) + G(B(t+1))

≤ F(Z(t), B(t), P (t), Q(t)) + G(B(t)) − 1

2
‖Ẑ(t) − Ẑ

(t+1)‖2F
−(1 + μ)‖P (t) − P (t+1)‖2F − (1 + μ

2λ1
)‖Q(t) − Q(t+1)‖2F (23)

where both μ and λ1 are non-negative.

It is easy to discover that F(Z, B, P, Q) + G(B) is strictly monotonic decreasing. Thus,
BDSR can converge to an optimal solution in limited iteration. The proof of Theorem 2 is
given in the Appendix.

4 Experiments

4.1 Experimental Setup

We compare our BDSR algorithm against other subspace clustering algorithms including
SSC, LRR, LRRSC, SLLRRC, BDR and IBDLR using synthetic and real-world datasets.
Note that BDR owns two versions, i.e., BDR-B and BDR-Z. All of the methods are coded
by the MATLAB R2013b platform and all of the experiments are tested on a PC of Windows
10 with Intel(R) Core(TM) i7-9700 CPU and 32GB memory. The clustering error is adopted
as the metric to evaluate and discuss the performance of algorithms, which is defined as

err = 1 − 1

n

n∑

i=1

δ(l̂i ,map(li )) (24)

where {l̂i }ni=1 and {li }ni=1 denote the estimated labels and the ground truth ones of data
samples, respectively, map(·) depicts the optimal mapping from each clustering label to the
ground truth label and δ(l̂i ,map(li )) equals to 1 if l̂i = map(li ) or equals to 0 otherwise.
The smaller value of the metric indicates the better result, and the best results in experiments
are portrayed in boldface. Note that we report experimental results of contrast algorithms on
the premise of setting the parameters suggested by the authors or manually tuning them to
satisfaction.

4.2 Experiments on Synthetic Dataset

Toverify the effectiveness of the proposedBDSR,wefirst conduct experiments in comparison
to IBDLR on the synthetic dataset in this section. Similar to [42], we generate data matrix
X = [X1, X2, . . . , Xk] ∈ R

1000×1000 drawn from k = 5 linear subspaces {Si }ki=1, where
X i ∈ R

1000×200 (i = 1, 2, . . . , k). Specifically, the bases of subspace {U i }ki=1 ∈ R
1000×r

are computed by U i+1 = TU i (i = 1, 2, . . . , k − 1), where r = 5 denotes the rank of each
subspace, T ∈ R

1000×1000 is a random orthogonal matrix and the column vectors of U1 are
composed of the first r columns of the left singular matrixes computed from a randommatrix.
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Table 1 Clustering error (%) and
computational time (s) of IBDLR
and BDSR on the synthetic
dataset with different noise ratios

Ratio Algorithm Error Time

0% IBDLR 0.00 68.49

BDSR 0.00 24.20

30% IBDLR 3.45 194.71

BDSR 0.00 24.58

60% IBDLR 4.25 436.04

BDSR 0.00 24.86

90% IBDLR 6.73 640.15

BDSR 2.38 25.24

σ = 0% σ = 30% σ = 60% σ = 90%

(a)Binarized A by IBDLR

σ = 0% σ = 30% σ = 60% σ = 90%

(b)Binarized A by BDSR

Fig. 1 The affinity matrix A produced by IBDLR and BDSR on the synthetic dataset with different noise
ratios

After that, data from the i-th subspace is sampled by X i = U i S, where S ∈ R
r×200 is a

random matrix. We prepare four different scenarios in our experiment. That is, the dataset
is considered under four kinds of noise ratios of σ ∈ {0%, 30%, 60%, 90%}. Here σ = 0%
means that there is no noise to corrupt the dataset. When there is noise to corrupt the dataset,
σ = 30%, σ = 60% or σ = 90% of the samples selected to be contaminated are regenerated
by adding Gaussian noise with mean 0 and standard deviation 0.1‖xi‖2. Considering the
randomness, each experiment is independently repeated 20 times and the average results are
recorded.

Table 1 shows the clustering results of twoalgorithmson the synthetic datasetwith different
noise ratios.As canbe seen fromTable 1, in the case that the data is not corruptedbynoise, both
of the two algorithms achieve perfect clustering segmentation with an error of 0, although the
computational time of IBDLR is slightly longer than that of BDSR. However, in the case that
the data is corrupted by noise, BDSR significantly outperforms IBDLRwhether in clustering
error or computational time. We also observed that the clustering error and computational
time of BDSR are always stable with the increase of noise ratio, which proves the strong
robustness.

Figure 1 visualizes the affinity matrix A produced by IBDLR and BDSR on the synthetic
dataset with different noise ratios. For ease of observation, the binarized A is defined here.
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That is, if Ai j ≥ τ , then let Ai j be 1, otherwise 0, where τ = 10−1. Ideally, the affinities
of data samples from the same cluster should be one, leading to the coherent property, while
those from different clusters should be zero, resulting in the discriminative property. In other
words, the ideal affinity matrix A should exhibit a salient block diagonal structure, where the
entries on the diagonal block correspond to the data within the cluster, while the entries off the
diagonal block correspond to the data outside the cluster. From Fig. 1, it can be seen that the
affinity matrix produced by BDSR has a clearer and cleaner block diagonal structure than that
produced by IBDLR, which tends to divide clusters correctly according to the corresponding
subspace.

4.3 Experiments on Real-World Datasets

In order to demonstrate the efficiency of the proposed BDSR, we further conduct experiments
on three kinds of real-world datasets from object clustering, face clustering and motion
segmentation in this section, where BDSR is compared with SSC, LRR, LRRSC, SLLRRC,
BDR-B, BDR-Z and IBDLR.

4.3.1 Object Clustering

The COIL20 database.1 a famous object clustering dataset, is comprised of 1440 images from
20 objects taken from different angles [43]. There are 72 images for each object and the size of
each image is 128×128 pixels. Fig. 2 shows some original image samples from the COIL20
database. To reduce memory requirements, each image sample is downsampled to 32 × 32
pixels, thus forming a 1024-dimensional vector. After that, we evenly divide the 38 subjects
into two groups, where the first groups correspond to subjects 1 to 10 and the last groups
correspond to subjects 11 to 20. In the experiment, we arrange two scenarios to carry out.
That is, the database is considered under two kinds of subject classes c1 ∈ {2, 8}. As a result,
there are s1 combinations in both two scenarios, where s1 = 2 ×

(
10

2

)

= 2 ×
(
10

8

)

= 90.

For these tasks, the average results are recorded.
Table 2 shows the clustering results of various algorithms on the COIL20 database. As can

be seen from Table 2, BDSR obtains the best results in most cases in terms of all metrics. We
can also observe that the performance of the multi-structured representation algorithms, such
as BDSR and IBDLR, are generally better than that of the single-structured representation
algorithms, such as SSC, LRR, LRRSC, SLLRRC, BDR-B and BDR-Z. The reason is that,
compared with the single-structured representation, the multi-structured representation pro-
vides more complementary and consistent information. Besides, IBDLR achieves nearly the
identical level of efficiency as BDSR, but lacks a large degree of effectiveness. This is due to
it aims at solving the clustering problem for non-linear data which consumes time to convert
the data from the original space to a specific kernel space and is also difficult to find a suitable
kernel space. Figure 3 shows the convergence curves of BDSR on the COIL20 database with
different subject classes. From Fig. 3, it can be seen that the value of residual error decreases
monotonically in each iteration and rapidly approaches an accumulation point. As shown in
the experimental study, it usually converges in less than 100 iterations.

1 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
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Fig. 2 Some original image samples from the COIL20 database

Table 2 Clustering error (%) and
computational time (s) of various
algorithms on the COIL20
database

Class Algorithm Error Time

Mean Med. Max. Std.

2 SSC 1.47 0.83 2.57 1.53 9.75

LRR 2.23 1.77 3.11 3.21 4.41

LRRSC 2.17 1.54 3.29 3.02 8.64

SLRRC 1.34 0.63 2.37 1.04 5.72

BDR-B 0.96 0.56 1.54 0.86 6.74

BDR-Z 0.93 0.53 1.33 0.77 6.74

IBDLR 0.88 0.48 1.15 0.84 9.85

BDSR 0.89 0.43 1.19 0.74 2.58

8 SSC 3.53 3.36 5.34 7.35 21.34

LRR 3.83 2.96 5.71 6.22 25.73

LRRSC 3.41 3.02 4.02 3.57 29.94

SLRRC 3.13 2.63 4.64 3.11 23.61

BDR-B 2.12 1.46 2.85 2.91 26.46

BDR-Z 1.95 1.27 2.63 2.64 26.46

IBDLR 1.40 0.95 1.75 1.07 33.56

BDSR 1.19 0.94 2.43 1.67 11.74

4.3.2 Face clustering

The Extended Yale B database2 is a commonly used face clustering dataset, which contains
2414 images from 38 people acquired under different pose and illumination conditions [44,
45]. Each person has about 59 to 64 images with 168×192 pixels. Figure 4 shows some
original image samples from the ExtendedYale B database. To reducememory requirements,
each image sample is downsampled to 42×48 pixels, thus forming a 2016-dimensional vector.
After that, we divide the 38 subjects into four groups, where the first three groups correspond
to subjects 1 to 10, subjects 11 to 20 and subjects 21 to 30, and the last groups correspond to
subjects 31 to 38. In the experiment, we also arrange two scenarios to carry out. That is, the
database is considered under two kinds of subject classes c2 ∈ {5, 8}. As a result, there are s3
and s4 combinations in two scenarios, respectively, where s2 = 3×

(
10

5

)

+ 1×
(
8

5

)

= 812

and s3 = 3 ×
(
10

8

)

+ 1 ×
(
8

8

)

= 163. For these tasks, the average results are recorded.

2 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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Fig. 3 Convergence curves of
BDSR on the COIL20 database
with different subject classes
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Table 3 shows the clustering results of various algorithms on theExtendedYaleB database.
As can be seen from Table 3, the performance of BDSR is the best and far better than other
competitors, especially LRR. In particular, IBDLR has the smallest standard deviation of
clustering error on the dataset with 8 subject classes.

Figure 5 shows the affinity matrix A produced by BDSR using the t-distributed stochastic
neighbor embedding (t-SNE) [46] on the Extended Yale B database with different subject
classes. From Fig. 5, it can be seen that the affinity matrix A has great distinguishing power
because each category in the affinity matrix is quite scattered from the visualizations.

4.3.3 Motion Segmentation

As a well-known motion segmentation dataset, the Hopkins 155 database3 consists of 120
sequences of two motions, 35 sequences of three motions and 1 sequence of five motions
[47]. Figure 6 shows some original image samples from theHopkins 155 database. On the one
hand, we keep the original feature trajectories of each motion in 2F-dimensional subspace
without any preprocessing, where F denotes the number of frames in the video. On the other
hand,we project the original data into 4k-dimensional subspace by using principal component

3 http://www.vision.jhu.edu/data/hopkins155/.
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Fig. 4 Some original image samples from the Extended Yale B database

Table 3 Clustering error (%) and
computational time (s) of various
algorithms on the Extended Yale
B database

Class Algorithm Error Time

Mean Med. Max. Std.

5 SSC 4.33 2.82 10.43 4.60 48.86

LRR 6.92 5.63 9.78 8.64 25.10

LRRSC 3.19 2.81 4.17 4.57 47.81

SLRRC 3.04 2.72 3.25 4.01 31.62

BDR-B 4.62 2.47 5.52 6.39 46.74

BDR-Z 3.46 2.85 5.03 2.48 46.74

IBDLR 2.75 2.54 3.54 2.75 40.23

BDSR 1.63 0.98 1.95 0.95 21.10

8 SSC 5.87 4.49 12.53 4.13 84.08

LRR 13.62 9.67 25.44 15.35 36.96

LRRSC 4.01 3.13 6.47 4.01 81.77

SLRRC 3.14 3.07 5.84 3.26 47.16

BDR-B 3.45 2.68 7.14 1.29 47.68

BDR-Z 4.73 4.73 7.78 2.83 47.68

IBDLR 3.64 3.21 3.96 0.76 63.44

BDSR 1.82 1.24 2.74 1.35 27.76

analysis (PCA) [48,49], where k denotes the number of subspaces. In the experiment, we
arrange two scenarios to carry out again. That is, the database is considered under two kinds
of feature dimensions of ω ∈ {2F, 4k}. Since each sequence can be regarded as a separate
segmentation task, there are a total of 156 segmentation tasks. For these tasks, the average
results are recorded.

Table 4 shows the clustering results of various algorithms on the Hopkins 155 database.
As can be seen from Table 4, BDSR obtains the mean value of clustering error of 0.74%
on the dataset with 2F feature dimensions, which is 1.91%, 0.97%, 0.76%, 0.20%, 0.69%,
0.43% and 0.21% improvements over SSC, LRR, LRRSC, SLLRRC, BDR-B, BDR-Z and
IBDLR, respectively. Besides, BDSR obtains the mean value of clustering error of 0.82% on
the dataset with 4k feature dimensions, which is 1.83%, 1.35%, 0.74%, 0.69%, 1.25%, 1.14%
and 0.66% improvements over these algorithms, respectively. In addition, all algorithms get
0.00% median value of clustering error and LRR has the smallest computing time on the
dataset with 4k feature dimensions.

Figure 7 shows the mean clustering accuracy of BDSR using different parameters on the
Hopkins 155 database with different feature dimensions. We tune two parameters λ1 and λ2
from the wide range of {10−4, 10−3, 10−2, 10−1, 100, 101, 102}. From Fig. 7, it can be seen
that BDSR is not very sensitive to these parameters, and it achieves relatively higher mean
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Fig. 5 The affinity matrix A
produced by BDSR using t-SNE
on the Extended Yale B database
with different subject classes
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Fig. 6 Some original image samples from the Hopkins 155 database

Table 4 Clustering error (%) and
computational time (s) of various
algorithms on the Hopkins 155
database

Dim. Algorithm Error Time

Mean Med. Max. Std.

2F SSC 2.65 0.00 46.97 7.61 0.97

LRR 1.71 0.00 33.33 4.86 1.14

LRRSC 1.50 0.00 33.33 4.36 4.34

SLRRC 0.94 0.00 23.52 3.87 2.51

BDR-B 1.43 0.00 41.41 5.45 1.26

BDR-Z 1.17 0.00 37.69 5.73 1.26

IBDLR 0.95 0.00 26.83 4.37 6.52

BDSR 0.74 0.00 21.84 3.08 0.68

4k SSC 2.65 0.00 45.50 7.53 0.89

LRR 2.17 0.00 43.38 6.58 0.53

LRRSC 1.56 0.00 43.38 5.48 4.25

SLRRC 1.51 0.00 40.84 5.28 0.89

BDR-B 2.07 0.00 49.49 6.11 1.24

BDR-Z 1.96 0.00 48.48 6.56 1.24

IBDLR 1.48 0.00 45.16 6.09 5.46

BDSR 0.82 0.00 39.69 3.95 0.65
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Fig. 7 Mean clustering error of
BDSR using different parameters
on the Hopkins 155 database with
different feature dimensions
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clustering accuracy when the values of λ1 and λ2 are in the interval 10−2 to 100. It is worth
mentioning that we also report the result in the case that λ1 or λ2 is equal to 0. In 2F feature
dimensions, when λ1 = 0 along with λ2 = 100 and λ1 = 10−1 along with λ2 = 0, BDSR
can obtain the mean clustering accuracy of 97.53% and 98.16%, respectively. In 4k feature
dimensions, when λ1 = 0 along with λ2 = 100 and λ1 = 10−2 along with λ2 = 0, BDSR
can obtain the mean clustering accuracy of 97.67% and 98.29%, respectively.

5 Conclusions and Further Works

In this paper, we propose a novel algorithm called BDSR for subspace clustering, which
combines sparse constraint and block diagonal prior so that they interactively enforce each
other to have expected properties. As a result, the obtained affinity matrix not only has a
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sparse structure, but also has a block diagonal structure, which strengthens its coherence
and discrimination. Moreover, an IALM-based strategy is developed to solve the resulting
optimization problem. To verify the performance of BDSR, a considerable amount of exper-
iments are conducted. Experimental results demonstrate that the proposed algorithm is very
competitive compared with other algorithms and highly robust in handling noisy data.

There are a few possible future research directions we need to point out. The parameters in
our algorithm are still heuristic, and it is thus meaningful to study the way to determine these
optimal parameters. We are also interested in extending the algorithm to the deep framework
to further improve its performance utilizing non-linear information. Besides, how to import
the low-rank constraint into the algorithm and solve the correspondingminimization problem
reasonably seems to be another topic worth considering.
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Appendix

The proof of Theorem 2 is given as follows.

Proof For simplicity, Eq. (12) can be rewritten as

Ẑ
(t+1) = argmin

Z

1

2
‖Z − �1‖2F

s.t. Z ≥ 0 (25)

Then, we have

1

2
‖Ẑ(t) − �1‖2F = 1

2
‖Ẑ(t) − Ẑ

(t+1) + Ẑ
(t+1) − �1‖2F

≥ 1

2
‖Ẑ(t) − Ẑ

(t+1)‖2F + 1

2
‖Ẑ(t+1) − �1‖2F (26)

Hence, we can obtain

F(Z(t+1), B(t+1), P (t+1), Q(t+1)) ≤ F(Z(t), B(t+1), P (t+1), Q(t+1))

−1

2
‖Ẑ(t) − Ẑ

(t+1)‖2F (27)

From Eq. (15), we can directly obtain

F(Z(t), B(t+1), P (t+1), Q(t+1)) + G(B(t+1))

≤ F(Z(t), B(t), P (t+1), Q(t+1)) + G(B(t)) (28)

For simplicity, Eq. (17) can be rewritten as

P = argmin
P

‖P‖2F + μ‖P − �2‖2F (29)
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Then, we have

‖P (t+1)‖2F + μ‖P (t+1) − �2‖2F ≤ ‖P (t)‖2F + μ‖P (t) − �2‖2F
−((1 + μ))‖P (t) − P (t+1)‖2F (30)

Hence, we can obtain

F(Z(t), B(t), P (t+1), Q(t+1)) ≤ F(Z(t), B(t), P (t), Q(t+1))

−(1 + μ)‖P (t) − P (t+1)‖2F (31)

For simplicity, Eq. (19) can be rewritten as

Q = argmin
Q

‖Q‖1 + μ

2λ1
‖Q − �3‖2F (32)

Then, we have

‖Q(t+1)‖2F + μ

2λ1
‖Q(t+1) − �3‖2F ≤ ‖Q(t)‖2F + μ

2λ1
‖Q(t) − �3‖2F

−((1 + μ

2λ1
))‖Q(t) − Q(t+1)‖2F (33)

Hence, we can obtain

F(Z(t), B(t), P (t), Q(t+1)) ≤ F(Z(t), B(t), P (t), Q(t))

−(1 + μ

2λ1
)‖Q(t) − Q(t+1)‖2F (34)

Combining Eq. (27), Eq. (28), Eq. (31) and Eq. (34), we can gain

F(Z(t+1), B(t+1), P (t+1), Q(t+1)) + G(B(t+1)) ≤
F(Z(t), B(t), P (t), Q(t)) + G(B(t)) − 1

2
‖Ẑ(t) − Ẑ

(t+1)‖2F
−(1 + μ)‖P (t) − P (t+1)‖2F − (1 + μ

2λ1
)‖Q(t) − Q(t+1)‖2F (35)
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