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1. Introduction

Rationality is the key assumption behind standard economic models of

human behavior. The idea that individuals maximize their own self-interest

subject to resource constraints has led to numerous breakthroughs including

expected utility theory (von Neumann and Morgenstern, 1944), game theory

(von Neumann and Morgenstern, 1944; Nash, 1950), rational expectations

(Lucas Jr, 1972), the e±cient markets hypothesis (Samuelson, 1965; Fama,

1970), and option pricing theory (Black and Scholes, 1973; Merton, 1973).

The in°uence of this paradigm goes far beyond academia���it underlies

current macroeconomic and monetary policies, and has become an integral

part of the rules and regulations that govern ¯nancial markets today (Hu,

2012).

On the other hand, psychologists and economists have documented many

violations of rational models in human behavior, often referred to as

\cognitive biases". These systematic deviations from rational behaviors are

hard to reconcile with the standard economic models, and are therefore

considered irrational behaviors. Representatives of these cognitive biases

include probability matching, the tendency to choose randomly between

heads and tails when asked to guess the outcomes of a series of independent

biased-coin tosses, where the randomization matches the probability of the

biased coin (Grant et al., 1951; Herrnstein, 1961); loss aversion, the tendency

to take greater risk when choosing between two potential losses and less risk

when choosing between two potential gains (Tversky and Kahneman, 1974;

Tom et al., 2007); uncertainty e®ect, where a risky prospect is valued less

than its worst possible outcome (Gneezy et al., 2006); and con¯rmation bias,

the tendency to search for or interpret information in a way that con¯rms

one's preconceptions (Mahoney, 1977). Such anomalous behaviors have also

been observed in many non-human subjects ranging from bacteria to pri-

mates (Harder and Real, 1987; Kirman, 1993; Smallwood, 1996; Chen et al.,

2006; Ben-Jacob, 2008; Santos and Chen, 2009), which suggests that they

may have a common and ancient origin, and an evolutionary role that belies

their apparent shortcomings.

The debate between rational models of behavior and their systematic

deviations has attracted an enormous amount of research in economics,

psychology, and evolutionary biology (Becker, 1962; Stanovich and West,

2000; Rabin and Thaler, 2001; McKenzie, 2003; Burnham, 2013; Gneezy and

List, 2013). For instance, bounded rationality (Simon, 1955) and prospect

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992)
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provide alternative perspectives for understanding human behavior beyond

the maximization of expected utility. At the same time, numerous empirical

studies are devoted to understanding the relationship between individual

rationality and decision-making in the real world (Hsu et al., 2005; Camerer

and Fehr, 2006; Gneezy and List, 2006; Apicella et al., 2008; Dreber et al.,

2009; Chen and Chen, 2011; Bednar et al., 2012; Fershtman et al., 2012;

Gneezy and Imas, 2014).

Evolutionary principles have been adopted by economists and psycholo-

gists to explain these counterintuitive behaviors (Cooper and Kaplan, 1982;

McDermott et al., 2008; Kenrick et al., 2009; Brennan and Lo, 2011, 2012).

Speci¯cally these ideas are applied to understand altruism and sociobiology

(Alexander, 1974; Becker, 1976; Hirshleifer, 1977; Almenberg and Dreber,

2013; Zhang et al., 2014a), the biological origin of utility functions and time

preference (Campbell, 1986; Rogers, 1994; Waldman, 1994; Robson, 1996a;

Samuelson, 2001; Zhang et al., 2014b), and the dynamics of ¯nancial markets

(Blume and Easley, 1992; Kogan et al., 2006; Hirshleifer and Teoh, 2009; Lo,

2017; Lo et al., 2018). Irrational behavior���as opposed to utility-maximizing

behavior���has been found useful and persistent in a variety of environments

in evolution (Belavkin, 2006; Houston et al., 2007; Waksberg et al., 2009;

Ross and Wilke, 2011; Okasha and Binmore, 2012). However, it is unclear

how these behaviors relate to standard economic theories of individual ra-

tionality, and why they emerge in some instances and not others.

In this paper, we reconcile the rationality debate by proposing an evolu-

tionary explanation for irrational behavior. The rational behavior is a function

of the particular environment, and di®erent environments lead to di®erent

rational behaviors in evolution. As a result, irrational behaviors not only persist

in evolution, but are also necessary for robust population growth in stochastic

environments. Furthermore, we show that there is an optimal degree of irra-

tionality in the entire population depending on the degree of environmental

stochasticity. This is a novel implication of natural selection that has not

appeared in prior studies of human or animal rationality.

In contrast to game theory, the model considered in this paper does not

require any strategic interactions and individual decision-making is deliber-

ately mindless, allowing us to determine the most primitive and fundamental

links between stochastic environments and adaptive behavior. Even in such a

simple setting, we ¯nd a range of randomized behaviors can arise and persist

via natural selection, including behaviors that do not always conform to

common economic intuition about rationality. Simon (1981) illustrated this

Variety Is the Spice of Life

1850009-3



principle vividly with the example of a single ant traversing a mixed terrain of

sand, rocks, and grass. The ant's path seems highly complex, but the com-

plexity is due more to the environment than the ant's navigational algorithm.

Much of the rationality debate among economists and psychologists

focuses on whether the rational models can help people make better inferences

and decisions in the real world (McKenzie, 2003). Instead, our framework

provides an evolutionary explanation for seemingly irrational behaviors and

di®erent degrees of irrationality in the population. The results have wide-

spread implications for asset pricing and ¯nancial markets, corporate be-

havior, and disciplines beyond ¯nance such as science, management, and

public policy.

For example, it is well-known that irrational traders persist in ¯nancial

markets (De Long et al., 1990, 1991; Biais and Shadur, 2000; Hirshleifer et al.,

2006; Kogan et al., 2006) and that behaviors such as herding prevail, espe-

cially during crisis (Bowe and Domuta, 2004; Drehmann et al., 2005; Hirsh-

leifer and Teoh, 2009). These behaviors can a®ect asset prices and create

bubbles and crashes. From the corporate ¯nance perspective, managers do

not always form beliefs logically, nor do these beliefs convert to decisions in a

consistent and rational manner (Kahneman and Tversky, 2000; Gilovich et al.,

2002). Ourmodel suggests that these behaviors are not necessarily \irrational",

but simply the result ofmarket evolutions. In fact, behaviors normally regarded

as \irrational", such as overcon¯dence (Kyle and Wang, 1997; Daniel and

Titman, 1999; Hirshleifer and Luo, 2001), might even be bene¯cial in certain

market environments. From this perspective, our framework provides a formal

basis for the Adaptive Markets Hypothesis (Lo, 2004, 2017).

Our framework also provides a di®erent explanation for the entry of new

¯rms and technologies in an industry, a well-studied phenomenon in indus-

trial economics (Klepper and Graddy, 1990; Audretsch and Mahmood, 1994;

Geroski, 1995; Mata et al., 1995; Campbell, 1998). Even if new entrants

appear to be suboptimal with respect to their current context, they facilitate

more robust growth of the entire industry in the face of a stochastically

shifting environment. Furthermore, our results yield the optimal amount of

entrants as a function of environmental stability.

Our model consists of an initial population of individuals, each assigned a

purely arbitrary behavior with respect to a binary choice problem. Assuming

that o®spring have behaviors identical to their parents, only those behaviors

linked to reproductive success will survive. Assuming that a small fraction of

o®spring have behaviors di®erent from their parents, irrational behavior

emerges as a result of mutation. Mutation provides diversity of behaviors in
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the entire population, and therefore, the important link between rational and

irrational behaviors. Over time, only a certain degree of mutation and irra-

tionality in the population will persist.

The roles of stochastic environments (Ishii et al., 1989; Kussell and Leibler,

2005; Acar et al., 2008; Gaal et al., 2010; Frank, 2011) and mutation (King,

1972; Taddei et al., 1997; Drake et al., 1998) have been extensively studied by

evolutionary biologists. Several quantitative models have been developed to

understand the magnitude of mutation rates (Kimura, 1960; Levins, 1967;

Leigh Jr., 1970; Gillespie, 1981; Travis and Travis, 2002; Desai and Fisher,

2011; Liberman et al., 2011). While some of our results will be familiar to

evolutionary biologists, they do not appear to be widely known in an eco-

nomic context. For completeness, we derive them from ¯rst principles and

provide the link between mutation and rationality.

By studying the impact of selection on behavior rather than on genes, we

are able to derive evolutionary implications that cut across species, physiol-

ogy, and genetic origins. In the same way that di®erent magni¯cations of a

microscope reveal di®erent details of a specimen, applying evolutionary

principles to behavioral variations leads to di®erent insights that may be

more relevant for economics, psychology, and behavioral ecology. Our focus

on behavior as the object of selection is a di®erent lens through which the

e®ects of evolution may be studied.

In the remainder of this paper, we ¯rst describe the binary choice model

with mutation. Then, we show that mutation and irrational behaviors are

essential in evolution. Furthermore, the degree of irrationality is determined

by evolution to match the degree of environmental stochasticity. We con-

clude with a brief discussion and provide additional technical details and

proofs in Appendix A.

2. Binary Choice Model with Mutation

We begin with the binary choice model (Brennan and Lo, 2011). Consider a

population of individuals that live for one period, produce a random number

of o®spring asexually, and then die. During their lives, individuals make only

one decision: they choose from two actions, a and b, and this results in one of

two corresponding random numbers of o®spring, xa and xb, described by some

well-behaved probability distribution function, �ðxa; xbÞ. We assume that xa
and xb are not perfectly correlated, and

Assumption 1. xa and xb are bounded non-negative random variables, and

Pðxa ¼ xb ¼ 0Þ ¼ 0.
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Assumption 2. ðxa; xbÞ is independent and identically distributed (IID)

over time and identical for all individuals in a given generation.

Note that Assumption 1 simply rules out the degenerate case that no

o®spring is produced at all. Now suppose that each individual chooses a with

some probability f 2 ½0; 1� and b with probability 1� f , denoted by the

Bernoulli variable I f , hence the o®spring of an individual is given by

x f ¼ I f xa þ ð1� I f Þxb; I f ¼ 1 with prob f

0 with prob 1� f :

�

We shall henceforth refer to f as the individual's behavior since it completely

determines how the individual chooses between a and b. Assume for the

moment that there is nomutation, so that o®spring from a type f individual are

still of type f . The following proposition (Brennan and Lo, 2011) summarizes

the population dynamics of the binary choice model without mutation.

Proposition 1. Under Assumptions 1 and 2, suppose that the total number

of type f individuals in generation T is n f
T . As both the number of generations

and the number of individuals in each generation increase without bound,

T �1 log n f
T converges almost surely to the log-geometric-average growth rate

�ðf Þ ¼ E½logðfxa þ ð1� f ÞxbÞ�: ð1Þ
Furthermore, the growth-optimal behavior f � is given by

f � ¼
1 if E½xa=xb� > 1 and E xb=xa½ � < 1

solution to ð3Þ if E½xa=xb� � 1 and E½xb=xa� � 1

0 if E½xa=xb� < 1 and E½xb=xa� > 1;

8<
: ð2Þ

where f � is de¯ned implicitly in the second case of (2) by

E
xa

f �xa þ ð1� f �Þxb

� �
¼ E

xb
f �xa þ ð1� f �Þxb

� �
; ð3Þ

and the expectations in (1)�(3) are with respect to �ðxa; xbÞ.
The growth-optimal behavior, f �, is a function of the particular environ-

ment �ðxa; xbÞ. The role of � is critical in our framework, as it represents the

entirety of the implications of an individual's actions for reproductive success.

Embedded in � is the biological machinery that is fundamental to evolution,

i.e., genetics. However, this machinery is of less interest to economists than

the link between behavior and reproductive success, which is summarized

compactly by �. The speci¯cation of � also captures the fundamental dis-

tinction between traditional models of population genetics (Levins, 1968;

T. J. Brennan, A. W. Lo & R. Zhang

1850009-6



Wilson and Bossert, 1971; Dawkins, 1976) and more recent applications of

evolution to behavior (Hamilton, 1964; Trivers, 1971; Wilson, 1975; Maynard

Smith, 1982); the former focuses on the natural selection of traits (determined

by genetics), whereas the latter focuses on the natural selection of behavior.

Although behavior is obviously linked to genetics, the speci¯c genes involved,

their loci, and the mechanisms by which they are transmitted from one

generation to the next are of less relevance to economic analysis than the

ultimate implications of behavior for reproduction, i.e., �. In the jargon of

econometrics, � may be viewed as a \reduced form" representation of an

individual's biology.

This simple and general model generates a remarkably rich set of behaviors

(see Brennan and Lo (2011)). For example, the three possible behaviors in (2)

are a generalization of the \adaptive coin-°ipping" strategies of Cooper and

Kaplan (1982). The behavior f � that emerges through the forces of natural

selection is quite distinct from the neoclassical economic framework of expected

utility in one important respect: expected utility theory implies deterministic

behavior. Furthermore, intelligence has a natural de¯nition in this frame-

work���any type of behavior that is positively correlated with reproductive

success���and bounds on the level of intelligence arise organically from physio-

logical and environmental constraints on this correlation (Brennan and Lo,

2012). By considering di®erent sources of randomness in reproductive success,

risk aversion can be derived in this framework as a consequence of systematic

reproductive risks (Zhang et al., 2014b). An extension of Proposition 1 may also

be interpreted as a primitive form of group selection, in which natural selection

appears to operate at the group level instead of, or in addition to, the level of

individuals, traits, or genes (Zhang et al., 2014a).

In this stylized model of evolution, we are able to derive behaviors purely

from evolution. We do not need any assumption on individual utility func-

tions. In fact, the growth-optimal behavior in Proposition 1 does not always

align with individually-optimal behavior if individuals maximize their

expected number of o®spring (Brennan and Lo, 2011). What is optimal from

the evolutionary perspective, or what we call \rational behaviors", depends

on the environment. This is an important distinction from the neoclassical

economic framework which assumes certain exogenous utility functions and

derives behaviors given utility functions.

2.1. Mutation: A link between optimal and suboptimal behavior

Now, we add mutation to the binary choice model. In general, mutation

implies that the o®spring of type-f individuals are not necessarily of type-f ,
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but assume a probability distribution over all possible types. We consider a

simple form of mutation: an o®spring of type-f mutates equally likely to all

types.

To be more speci¯c, consider a discrete type space. Let f take values in a

¯nite set ff1; f2; . . . ; fKþ1g (for example, f0; 1
K ;

2
K ; . . . ;

K�1
K ; 1g) where K is a

positive integer. The world hasK þ 1 types in total. In addition toAssumptions

1 and 2, we further assume that:

Assumption 3. Each type-f individual mutates with a small probability

� > 0 to type g 6¼ f . Once it mutates, it mutates with equal probability �
K to

any type g 2 ff1; f2; . . . ; fKþ1gnff g.
Note that Assumption 3 is a simple and special form of mutation. From the

behavioral point of view, it is general enough to capture the most important

characteristics of mutation, which is to provide the link between di®erent

behaviors. With this particular structure, we are able to parametrize the

degree of mutation with a single parameter �.

We would like to emphasize that each individual lives for only one period

in our model, and therefore its mutant o®spring may be viewed as \new

entrants" in the next generation's population because they represent di®erent

behaviors than their predecessors. Also, there is no intelligence or volition

ascribed to behavior f ; we are simply providing a formal representation for it,

and then investigating its evolutionary implications. To that end, individuals

choosing between a and b according to the same f may be viewed as con-

sisting of the same \type", where types are indexed by f and range contin-

uously from 0 to 1, including the endpoints. In this manner, we are able

to study the evolutionary dynamics of each type of individual over many

generations.

Once mutation is introduced into the population, it is no longer possible

to analyze the population dynamics of each type f separately. The entire

system is a multi-type branching process in random environments (Smith and

Wilkinson, 1969; Tanny, 1981). Let nt ¼ ðn f1
t ; . . . ;n

fKþ1

t Þ0 be the column

vector of the number of individuals of all K þ 1 types in generation t.

The following proposition describes the population dynamics between two

generations.

Proposition 2. Under Assumptions 1�3, as n g
t�1 increases without bound

for all g 2 ff1; f2; . . . ; fKþ1g, nt can be written as

nt ¼ At � nt�1 a:s: ð4Þ
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where At :¼ M � Ft. Here, M is a constant mutation matrix:

M ¼

1� �
�

K
� � � �

K
�

K
1� � � � � �

K

..

. ..
. . .

. ..
.

�

K

�

K
� � � 1� �

0
BBBBBBBBB@

1
CCCCCCCCCA
;

and Ft is a stochastic fecundity matrix:

Ft ¼
f1xa;t þ ð1� f1Þxb;t � � � 0

..

. . .
. ..

.

0 � � � fKþ1xa;t þ ð1� fKþ1Þxb;t

0
BB@

1
CCA;

with 0 ¼ f1 < f2 < � � � < fKþ1 ¼ 1.

Equation (4) gives the fundamental relationship between individuals in

two consecutive generations. With probability 1, nt can be written as the

product of two matrices and nt�1. Ft represents the reproducibility of dif-

ferent types of individuals, and M represents a re-distribution of types as a

result of mutation. The natural question is: How does nt behave in the limit?

We summarize the asymptotic behavior of a population with mutation in the

following proposition.

Proposition 3 (Growth rate). Under Assumptions 1�3, there exists a

number �� such that

�� ¼ lim
T!1

1

T
log c 0nT ¼ lim

T!1
1

T
log jjAtAt�1; . . . ;A1jj

almost surely, where jj � jj is any matrix norm and c is any vector of bounded

non-negative numbers (c 6¼ 0).

In particular, when c is a vector of 1's, we get the growth rate of the entire

population; when c ¼ ei (the vector with its ith coordinate equal to 1, and 0

otherwise), we get the growth rate of the ith type individuals. A direct cor-

ollary of Proposition 3 is that all types of behaviors grow at the same expo-

nential rate ��. This is an important di®erence between populations with

mutation and non-mutation populations. To understand this fact, suppose

a long time has elapsed. Because the positive mutation rate is ¯xed, any

behavior that is not favored by the current environment still gets a ¯xed
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proportion of the o®spring from the behavior that grows the fastest. There-

fore, the ratio of the individuals of any two behaviors can be lower bounded

by some positive constant, and no single behavior can grow exponentially

faster than any other behaviors. Note that �� is called the maximum Lia-

punov characteristic exponent of matrix At in the probability literature, and

Corollary 1 in the next sub-section gives an estimate of ��.

Another di®erence between the mutation and non-mutation populations is

the asymptotic ratio between di®erent types of populations. Without mu-

tation, �ðf Þ is di®erent for di®erent f , and therefore the ratio n f
T=n

f �
T con-

verges to zero for any f 6¼ f � (see Proposition 1). However, �� is the same with

mutation for all types of f , and the ratio n f1
T=n

f2
T is typically stochastic even in

the long run as T increases without bound. We have ergodic theorems to

characterize the asymptotic behavior of this ratio in the next sub-section.

2.2. Asymptotic population dynamics

Under Assumptions 1–3, let Pt ¼ 1 0nt be the total population size at time t

and

yt :¼
nt

Pt

¼ n f1
TP

g n
g
T

; . . . ;
n
fKþ1

TP
g n

g
T

 ! 0
ð5Þ

be the normalized population vector in generation t. Because of the dynamics

(4) between two consecutive generations, fytg1
t¼0 is a vector-valued Markov

process, with a compact state space

Y :¼ y ¼ ðy1; . . . ; yKþ1Þ0jy � 0;
XKþ1

i¼1

yi ¼ 1

( )
:

The one-step transition probability for y 2 Y and B � Y is:

p1ðy;BÞ :¼ P�

Ay

jjAyjj 2 B

� �
: ð6Þ

Without mutation, because di®erent behaviors grow at di®erent exponential

rates, yt converges almost surely to a basis vector ei ¼ ð0; . . . ; 1; . . . ; 0Þ as

T ! 1. In the case of positive mutation rates, similar results exist only for

non-random matrices Ft in (4), in which case the long run proportion vector

converges to the eigenvector of Ft (see models in Robson (1996a) and Gaal

et al. (2010) for examples). In the case of positive mutation rates when Ft

are random matrices, environmental uncertainty implies that yt is typically

stochastic even in the long run (see simulation results in the Appendix).
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However, the following ergodic theorem (Tuljapurkar, 1990) allows us to

characterize the asymptotic behavior of yt:

Proposition 4 (Stochastic ergodic theorem). Under Assumptions 1�3,

let L tð�Þ be the distribution of yt, then L tð�Þ converges to a stationary

distribution L ð�Þ pointwisely as T increases without bound:

lim
T!1

L T ¼ L :

Proposition 4 asserts that the proportion vector, yt, converges weakly as

T ! 1. In addition, by basic properties of Markov chains, the stationary

distribution, L , satis¯es the following equation:

L ðBÞ ¼
Z
Y

p1ðy;BÞL ðdyÞ

for any B � Y . An important application of Proposition 4 is that it provides

a formula to estimate the exponential growth rate ��. Note that the total

population size

Pt ¼ 1 0nt ¼ 1 0MFtnt�1 ¼ 1 0Ftnt�1 ¼ Pt�11
0Ftyt�1;

so the log-geometric-average growth rate �� can be expressed as

�� ¼ E½logð1 0Ftyt�1Þ�; ð7Þ
where the expectation is taken over the joint stationary distribution of

ðFt;yt�1Þ.
Corollary 1 (Bounds of growth rate). Let f � be the optimal behavior

without mutation (see Proposition 1). Under Assumptions 1�3, if the type

space is dense enough such that f � 2 ff1; f2; . . . ; fKþ1g, then
�ðf �Þ � j logð1� �Þj � �� � �ðf �Þ: ð8Þ

Corollary 1 asserts that the growth rate �� is slightly less than the optimal

population growth rate without mutation. We will identify the cases where

mutation does speed up growth in non-stationary environments in Section 3.

Appendix A gives additional results for population dynamics with muta-

tion. In particular, we give the asymptotic distribution of total population

size, Pt; the rate of convergence for the limit distribution, L ð�Þ; and the

optimal behavior with mutation in the probabilistic sense.

2.3. Extinction probability

When the population is extinct in evolution, stochastic processes nt and yt

become degenerate. Therefore, all results so far are implicitly conditional on
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non-extinction sample paths. However, extinction is important in evolution,

and particularly of interest with mutation. In this sub-section, we investigate

the extinction probability of di®erent behaviors f in di®erent environments

�ðxa; xbÞ.
Consider a speci¯c behavior f 2 ff1; f2; . . . ; fKþ1g starting with an initial

population n f
0 > 0, where the type f is de¯ned as extinct if n f

T ¼ 0 for some

T > 0, and surviving otherwise. In terms of extinction, there are two sce-

narios in which the number of generation T increases without bound

(i) limT!1Pðn f
T > 0Þ ¼ 0: the population is extinct with probability 1;

(ii) limT!1Pðn f
T > 0Þ > 0: the population survives with positive probability.

Note that in case (ii), if limT!1Pðn f
T > 0Þ < 1, then the extinction prob-

ability depends on the initial population, n0. However, when n0 is relatively

large, the survival probability is close to 1. To be more speci¯c, we de¯ne that

the type f is immortal if the extinction probability is strictly less than 1 as

T ! 1, and the extinction probability goes to zero as the initial number of

individuals, n0, increases without bound. Mathematically, a type f is immortal

if Pðn f
T ¼ 0Þ < 1 as T ! 1, and Pðn f

T ¼ 0Þ ! 0 as T ! 1 and n0 ! 1.

For an immortal population, case (ii) can be treated essentially as almost

sure survival with a large initial population. Propositions 1–4 are implicitly

conditional on non-extinction sample paths. The probability of non-extinction

in these results is close to 1 for a large initial population, according to the next

proposition:

Proposition 5 (Immortality with mutation). Suppose that the initial

population of any behavior f 2 ff1; f2; . . . ; fKþ1g is n0,

(i) Consider the model without mutation. Under Assumptions 1–2, any be-

havior f with �ðf Þ < 0 is extinct with probability 1, and any behavior f

with �ðf Þ > 0 is immortal.

(ii) Consider the model with mutation rate � > 0. Under Assumptions 1–3, all

behaviors f 2 ff1; f2; . . . ; fKþ1g are immortal if �� in Proposition 3 is pos-

itive. In particular, if there exists a behavior f 2 ff1; f2; . . . ; fKþ1g such that
�ðf Þ > j logð1� �Þj without mutation, then all behaviors are immortal.

Proposition 5 asserts that positive mutation rates make all behaviors in

the population immortal and help preserve all behaviors even if some of them

are inferior in the current environment. In other words, mutation provides

robustness to evolution by avoiding extinction.
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So far we have considered stationary environments generating IID

fecundities across time. In this case, mutation does not help increase the

speed of population growth (Corollary 1). This brings us to the next topic,

where non-stationary environments are considered and mutation can indeed

speed up growth.

3. Optimal Degree of Irrationality

The binary choice model with mutation provides a framework for evolution of

behaviors. Given a particular environment �ðxa; xbÞ, we have shown that the

growth-optimal behavior is not necessarily the same as the individually

\rational" behavior, implying that seemingly \irrational" behaviors could

emerge purely from adaptation given certain environments (see Proposition 1

and Brennan and Lo (2011)).

Furthermore, even if the growth-optimal behavior happens to be the in-

dividually \rational" behavior, it does not necessarily dominate the entire

population if there is mutation. In fact, the very notion of \optimality" is ill-

de¯ned in isolation, and must be interpreted with respect to a given envi-

ronment. In stochastic environments, mutation provides the link between

seemingly \rational" and \irrational" behaviors. Positive mutation rates and

\irrational" behaviors are necessary because environmental shocks could

happen unexpectedly. In this sense, a population with \irrational" behaviors

is favored in order to maintain robust growth under possible environmental

shocks. We further elaborate on this idea by considering regime-switching

environments.

Following the binary choice model with mutation, suppose that Nature

switches randomly between two regimes in which the fecundities are speci¯ed

by �1ðxa; xbÞ and �2ðxa; xbÞ, respectively. The lengths of regime 1 and regime

2 are positive integer random variables, T 1 and T 2, speci¯ed by some well-

behaved probability distribution function, FðT 1;T 2Þ. Nature draws IID

samples from FðT 1;T 2Þ to generate lengths of consecutive regimes

T 1
1 ;T

2
1 ;T

1
2 ;T

2
2 ; . . . . Note that the superscript denotes the regime number

and the subscript indicates the cycle, where a cycle is de¯ned as two conse-

cutive changes of regime:

0!�1

T 1
1 !�

2

T 2
1 !�

1

T 1
2 !�

2

T 2
2 . . . :

We would like to emphasize that the environment within each regime is

still stochastic, an important distinction from the existing literature where

the environment is usually assumed to be approximately constant between
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changes or within a period (Ishii et al., 1989; Kussell and Leibler, 2005; Acar

et al., 2008; Gaal et al., 2010). We use a simple example to illustrate the idea

of an optimal degree of irrationality in the population.

3.1. An example of two behaviors

For simplicity, we consider a world with only two behaviors f 2 f0; 1g.
Suppose that the fecundities in the two regimes are given by �1ðxa; xbÞ and
�2ðxa; xbÞ that satisfy the following condition:

P�1ðxb ¼ 0Þ ¼ P� 2ðxa ¼ 0Þ ¼ 1:

That is, one choice in each regime results in no o®spring for sure. Note that in

regime 1, xa is still a random variable; in regime 2, xb is still a random

variable. In this world, during regime 1, only action a generates positive

o®spring; during regime 2, only action b generates positive o®spring. There-

fore, both behaviors die out without mutation after a few regime switches.

A positive mutation rate � helps preserve the irrational behaviors in the

current environment to prepare for possible environmental shocks, at the cost

of slowing down the growth of the rational behavior. In other words, a pos-

itive mutation rate implies that there is always a ¯xed positive fraction of new

entrants into the population in each generation, even if their behavior may be

suboptimal with respect to the current environment.

Proposition 6. With a positive mutation rate � > 0, let n �;Total
k be the total

number of individuals in the entire population at the end of the kth cycle.

Under Assumptions 1�3 and the regime-switching model described above

where fecundities �1ðxa; xbÞ and �2ðxa; xbÞ satisfy
P�1ðxb ¼ 0Þ ¼ P� 2ðxa ¼ 0Þ ¼ 1;

as k increases without bound, k�1 log n �;Totalk converges almost surely to

�ð�Þ ¼ 2 log
�

1� �
þ E½T 1 þ T 2� logð1� �Þ þ E½T 1�E� 1 ½log xa�

þ E½T 2�E�2 ½log xb�; ð9Þ
for 0 < � < 1. The growth optimal mutation rate �� that maximizes (9) is

�� ¼ 2

E½T 1 þ T 2� :

As a special case of Proposition 6, we have the following result when the

lengths of each regime are all IID.
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Corollary 2. Under the assumptions of Proposition 6, if in addition the

lengths of both regime 1 and regime 2 are drawn IID from a single distribution

FðTÞ, then the growth optimal behavior that maximizes (9) is

�� ¼ 1

E½T � :

By Proposition 6 and Corollary 2, the optimal mutation rate is simply the

reciprocal of the expected length of a regime. In the long run, the more stable

the environment, the less irrational behaviors are present in the population;

the more frequently environmental changes happen, the more irrational

behaviors prevail in the population. The mutation rate and the amount of

irrational behaviors are not exogenous variables given by Nature. They are

not only necessary, but also important quantities that are selected by Nature

in evolution to match the degree of environmental instability. In this sense,

natural selection shapes the degree of irrationality in the population.

This also implies that the optimal amount of new entrants into the pop-

ulation is determined by the degree of environmental stability. For example,

one would expect a relatively small number of new entrants in areas with

relatively stable market conditions, such as the automobile industry; and

relatively high turnover rates in areas with relatively volatile market condi-

tions, such as the hedge fund industry.

3.2. Generalization and simulation experiments

The implications from the two-behavior example with a special fecundity

structure above can be generalized to any number of types and any fecundity

structures. We use simulation experiments to demonstrate the generality of

the optimal degree of mutation and irrationality. In this section, we consider

eight di®erent environments, and derive the optimal degree of mutation

for each.

In the following experiments, the lengths of regimes T 1 and T 2 are in-

dependent random variables with expectation E½T 1� and E½T 2�, respectively,
ranging from 10 to 37. For a given expectation E½T 1�, T 1 is uniformly dis-

tributed in the interval ½0:8� E½T 1�; 1:2� E½T 1��, rounding to the nearest

integer. T 2 is distributed in the same way.

For a given pair ðE½T 1�;E½T 2�Þ, 11 types of behavior from f0; 1
10 ;

2
10 ; . . . ; 1g,

starting with one individual, each evolve for 700 to 1,000 generations. The

optimal degree of mutation in each pair of regimes is calculated by taking the

average over 200 to 500 simulation paths.
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Table 1 gives eight di®erent environmental conditions, for which we plot

the optimal degree of mutation and the optimal log-geometric-average

growth rate as a function of E½T 1� and E½T 2� in Fig. 1. In these ¯gures, the

colored plane shows the optimal mutation rates; the transparent surface, for

which the height is indicated by the z-axis, shows the optimal log-geometric-

average growth rate associated with that optimal mutation rate.

Symmetric regimes. Environment 1 assumes that one of the actions in

each regime leads to no o®spring. Results are consistent with the example of

two behaviors: the optimal degree of mutation is inversely proportional to

E½T 1� þ E½T 2�. However, the growth rate is proportional to E½T 1� and E½T 2�:
the longer the length of a regime, the faster the population grows.

Table 1. Probability table for the simulation of optimal muta-
tion rates: Environments 1–8.

Environment 1 Environment 2

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 1
3

1
3

1
3

1
3

1
3

1
3

Prob. 1
3

1
3

1
3

1
3

1
3

1
3

xa 3 2 1 0 0 0 xa 3 2 1 1 1 1
xb 0 0 0 3 2 1 xb 1 1 1 3 2 1

Environment 3 Environment 4

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 0.8 0.2
xa 3 0 0 3 xa 3 1 1 3
xb 0 3 3 0 xb 1 3 3 1

Environment 5 Environment 6

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 1
3

1
3

1
3

xa 3 0 1 3 xa 3 1 1 1 0
xb 0 3 3 1 xb 1 3 3 2 1

Environment 7 Environment 8

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 1
3

1
3

1
3

xa 3 0 3 1 xa 3 1 3 2 1
xb 0 3 1 3 xb 1 3 1 1 0
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(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

(e) Environment 5 (f) Environment 6

Fig. 1. Optimal degree of mutation and optimal log-geometric-average growth rate as a
function of regime lengths E½T 1� and E½T 2�. The sub¯gures summarize the simulation results
of the environments in Table 1. The colored plane with the colorbar shows the optimal
mutation rates; the transparent surface, for which the height is indicated by the z-axis, shows
the optimal log-geometric-average growth rate associated with that optimal mutation rate.
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Environment 2 considers the case where actions a and b both produce a

positive number of o®spring. As expected, the growth rates are much higher

than those in environment 1. The optimal degree of mutation is inversely

proportional to the length of a regime, except for two regions where the

length of one regime is much larger than that of the other (the region

E½T 1� > 25;E½T 2� < 12, and the region E½T 1� < 12;E½T 2� > 25). In these

two regions, the optimal degree of mutation drops to nearly zero because one

regime is signi¯cantly shorter than the other and therefore it is not worth

sacri¯cing growth in one regime for the other by mutation.

Environments 3 and 4 add dependency between xa and xb in each regime.

In those two cases, simulation results are similar to environment 1.

Asymmetric regimes. The four experiments considered so far are sym-

metric in terms of the two regimes. In other words, the second regime is

simply a copy of the ¯rst regime with xa and xb reversed. As a consequence, all

results are expected to be symmetric with respect to the line E½T 1� ¼ E½T 2�.
In this part we consider asymmetric regimes and investigate how this changes

the optimal mutation rates and growth rates.

Environment 5 is a mixture of environments 3 and 4: regime 1 is from

environment 3 and regime 2 is from environment 4. In this case the optimal

behavior is f �1 ¼ 0:8 in regime 1 and f �2 ¼ 0 in regime 2. There are several

interesting observations. First of all, both the optimal degree of mutation and

the growth rate are no longer symmetric with respect to E½T 1� and E½T 2�.
Secondly, the growth rate increases as E½T 2� increases and decreases as E½T 1�
increases. This is because regime 2 has a larger geometric-mean ¯tness than

regime 1, and the growth rate increases as the proportion of generations in

(g) Environment 7 (h) Environment 8

Fig. 1. (Continued)
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regime 2 increases. Thirdly, a phenomenon similar to that in environment 2

with zero mutation appears when E½T 1� is large and E½T 2� is small.

Environment 6 makes the two regimes more asymmetric. The optimal

behavior is f �1 ¼ 1 in regime 1 and f �2 ¼ 0 in regime 2. These results are

similar to those of environment 5.

When mutation is not desirable. Mutation is desirable because the en-

vironment is non-stationary and the two regimes favor di®erent actions.

When these conditions change, mutation is no longer desirable.

Environment 7 reverses actions a and b in the second regime of environment

5. The shape of the transparent surface indicating growth rates is similar to

that of environment 5. However, the optimal degree of mutation is zero for

any combination of E½T 1� and E½T 2� because the optimal behavior is f �1 ¼ 0:8

in regime 1 and f �2 ¼ 1 in regime 2. They are close to each other, and both of

them grow relatively fast in both regimes.

Environment 8 reverses actions a and b in the second regime of environment

6. The optimal behavior is f � ¼ 1 in both regimes and therefore the optimal

mutation rate is 0.

3.3. Optimal degree of irrationality

It is clear that there exists a balance between growth without mutation and

robustness with mutation. The simulation results con¯rm the inverse relation

between the optimal degree of mutation and expected lengths of regimes

derived analytically in the simple two-behavior model with special fecundity

structure (Proposition 6 and Corollary 2). The relation is robust across a

variety of environmental conditions.

For symmetric regimes, the optimal degree of mutation is inversely pro-

portional to E½T 1� þ E½T 2�; the growth rate is proportional to both E½T 1� and
E½T 2�. For asymmetric regimes, the growth rate increases as the proportion of

the regime that has a larger geometric-mean ¯tness increases. The relative

magnitude of the two regimes matters.

The optimal degree of mutation could be zero if one regime is signi¯cantly

shorter than the other because it is not worth sacri¯cing growth in one regime

for the other as long as the inferior behavior does not die out in the shorter

regime. The optimal degree of mutation could also be zero if the optimal

behaviors in two regimes are similar to each other, and both of them grow

relatively fast in both regimes.

The length of regime, or equivalently the frequency of change, is one aspect

of the nature of environmental change. The intensity of each environmental
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change is another aspect. In our framework, the intensity of environmental

change is re°ected by the di®erence in optimal behaviors in the two regimes:

jf �1 � f �2 j. When the optimal behaviors in the two regimes are similar to each

other, the optimal degree of mutation is relatively low; when the optimal

behaviors in the two regimes are wildly di®erent, the optimal degree of

mutation must be high to compensate for the slow growth of the suboptimal

behaviors in each regime.

In general, the evolutionarily optimal degree of irrationality in the popu-

lation is in°uenced by both the frequency and intensity of environmental

change. A higher frequency or intensity of change would imply a higher

degree of irrationality. Practically speaking, this implies that markets

and industries with more volatile environments should attract more entrants

over time.

4. Discussion

Evolutionary models of behavior are important for understanding the con-

°icts between individual rationality and actual human behavior. The binary

choice model (Brennan and Lo, 2011) provides a framework for explaining

the deviations from the neoclassic utility-based economic theory. Building on

the binary choice model, we investigate the evolution of irrational behaviors

in this article. Mutation is the key because it provides the link between

rational and irrational behaviors in an evolutionary context. Because the

de¯nition of \rationality" depends on a particular environment, rational

behaviors could change when the environment changes. As a result, irrational

behavior is necessary to provide robustness for population growth. Further-

more, we have shown that there is an evolutionarily optimal degree of irra-

tionality in the entire population. More unstable environments imply more

irrational behaviors in the population and more new entries over time.

The model considered in this article does not require any strategic inter-

actions, and individual decision-making is deliberately mindless, allowing us

to determine the most primitive and fundamental links between stochastic

environments and adaptive behavior. Even in such a simple setting, we ¯nd a

range of behaviors���behaviors that do not always conform to common

economic intuition about rationality���can arise and persist via natural se-

lection. As with Simon's (1981) ant, the complexity of human behavior is

often dictated by how we adapt to stochastic environments.

In contrast, the evolutionary origins of strategic behavior have also been

considered (Robson, 1996b; Skyrms, 2000, 2014), and natural selection can
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also produce more sophisticated behaviors such as overcon¯dence (Johnson

and Fowler, 2011), altruism and self-deception (Trivers, 1971; Becker, 1976),

and state-dependent strategies like the Hawk–Dove game (Maynard Smith,

1984), which emerge as a result of more complex environmental conditions. In

our framework, if we assume that one individual's action is correlated with

the reproductive success of another individual, individuals engaging in stra-

tegic behavior will reproduce more quickly than those with simpler behaviors

such as probability matching. If the actions of individuals in the current

generation can a®ect the reproductive success of individuals in future gen-

erations, even more complex dynamics are likely to emerge as in the well-

known overlapping generations model (Samuelson, 1958). In a resource-

constrained environment in which one individual's choice can a®ect another

individual's reproductive success, strategic interactions such as reciprocity

and cooperation will likely emerge within and across generations (Trivers,

1971; Nowak and High¯eld, 2011).

We have modeled mutation in a simple way in this article. There may be

other more complicated forms of mutation one can introduce to the evolu-

tionary framework, including mutation rates that are correlated with the

environment. This would correspond to individual intelligence and arise when

individuals have memory and therefore are able to adapt to the environment

given what has happened in the past.

Much of the rationality debate among economists and psychologists

focuses on whether the rational models can help people make better inferences

and decisions in the real world (McKenzie, 2003). Instead, our framework

provides an evolutionary explanation of irrational behaviors and di®erent

degrees of irrationality in the population. The results suggest that irrational

behaviors are necessary even if they are seemingly ine±cient in the current

environment, and the nature of the stochastic environment determines the

degree of irrationality and the amount of new entrants into the population.

From an application perspective, our results underscore the importance of

addressing di®erent human behaviors in di®erent environments. For exam-

ple, the ¯nancial market is considered to be e±cient most of the time

(Samuelson, 1965; Fama, 1970), and participants with irrational beliefs

constitute a minimal part in the market. However, in periods of economic

turbulence and ¯nancial crisis, irrational behaviors are much more prevalent

than usual. Irrational traders persist and behaviors such as herding prevail.

These behaviors can a®ect asset prices as well as create bubbles and crashes.

From the corporate ¯nance perspective, managers do not always form

beliefs logically, nor do these beliefs convert to decisions in a consistent and
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rational manner. Both the economic and regulatory environments can a®ect

managers' behaviors. Our model suggests that these behaviors are not nec-

essarily \irrational"; they are simply the result of adaptation. In fact, beha-

viors normally regarded as \irrational" such as overcon¯dence might even be

bene¯cial in certain market environments. From this perspective, a stable

environment would help reduce the amount of irrational behavior in the

population, and yield higher economic growth.

Our results also highlight the importance of the entry of new actors into

the market even if they appear suboptimal in the current context, and sug-

gest that the optimal amount of new entrants depends on the degree of

environmental stability. On the other hand, if not properly managed, volatile

environments can lead to increases in the degree of irrationality, implying

higher social costs and lower economic growth.

Finally, our results also highlight the potential dangers of sustained gov-

ernment intervention, which can become a source of systematic risk and cause

volatile environments in its own right (Acharya et al., 2011; Lucas, 2011).
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Appendix A

In Appendix A, we provide additional technical details and proofs for the

main results of the paper.

A.1. Birkho®'s contraction coe±cient

The de¯nition and properties of the Birkho®'s contraction coe±cient can be

found in Caswell (2001, pp. 370–372) or Ipsen and Selee (2011, p. 159). Let x

and y be positive vectors. The Hilbert pseudo-metric distance between x and

y is de¯ned as:

dðx;yÞ :¼ log
maxi

xi
yi

mini
xi
yi

 !
¼ max

i;j
log

xiyj
xjyi

� �
:
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It measures the distance between two vectors in a way that depends only on

their proportional composition, independent of their absolute size. It satis¯es

the following conditions:

dðx;yÞ � 0;

dðx;yÞ ¼ dðy;xÞ;
dðx;yÞ � dðx; zÞ þ dðz;yÞ;
dðx;yÞ ¼ 0 if and only if x ¼ ay;

dðx;yÞ ¼ dðax; byÞ for a; b > 0:

The Birkho®'s contraction coe±cient of a non-negative matrixA is de¯ned as

�ðAÞ ¼ sup
dðAx;AyÞ
dðx;yÞ ; ðA:1Þ

where the supremum is taken over all vectors x > 0 and y > 0 that are not

multiples of each other. Note that because d is invariant with respect to the

absolute magnitude of vectors, the supremum can be taken over a compact

subset equivalently, say jjxjj1 ¼ jjyjj1 ¼ 1.

IfA is a strictly positive matrix, then �ðAÞ < 1 (see Caswell (2001, p. 372)

for example). Under Assumptions 1–3, the matrix At might not be strictly

positive. However, there is at least one positive entry in each row of At , so

�ðAtÞ � 1 (see Hajnal (1976) for a discussion on \row allowable" matrices).

We will prove in Lemma 1 that �ðAtÞ is indeed strictly less than 1.

Lemma 1 (Contraction properties of At). Under Assumptions 1�3, the

Birkho®'s contraction coe±cient � of At is strictly less than 1 almost surely

Pð�ðAtÞ < 1Þ ¼ 1:

Because of Assumption 1, there are only ¯nitely many possible random

matrices At if xa and xb are integers. Therefore, the Birkho®'s contraction

coe±cient �ðAtÞ is uniformly less than some positive constant � < 1. But

Lemma 1 is enough for the analysis henceforth.

A.2. Additional results for population dynamics

Lemma 2 (Decomposition of population vector). Under Assumptions

1�3, let n0 ¼ 1 be a ðK þ 1Þ-dimensional column vector of 1's and let Pt ¼
1 0nt denote total population size at time t. Then the population vector at time

t can be written as:

nt ¼ ~Ft
~Ft�1 � � � ~F1n0

þ �

K
~Ft � � � ~F2P11þ ~Ft � � � ~F3P21þ � � � þ ~FtPt�11þ Pt1
� �
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almost surely, where ~Ft ¼ ð1� ð1þ 1
K Þ�ÞFt is the \mutation-adjusted"

fecundity matrix.

Lemma 2 provides a decomposition of the population vector nt into a linear

combination of a non-mutation vector and t vectors for shorter generational

spans, each of which is weighted by �
K and stands for evolution starting from a

certain time in the past.

Proposition 7 (Asymptotic population distribution). Under Assump-

tions 1�3, there exists some � such that the total population size Pt ¼ 1 0nt at

time t satis¯es:

logPt � t��

�
ffiffi
t

p ) Normalð0; 1Þ

in distribution as t ! 1.

By Proposition 7, the asymptotic distribution of total population is log-

normal, and the mean and variance of logPt both increase linearly with time.

Proposition 8 (Rate of convergence). Under Assumptions 1�3, the

Markov chain fytg1
t¼0 is uniformly ergodic if the support of L ð�Þ has

non-empty interior.1 By uniformly ergodic we mean thatL T converges to the

stationary distribution L geometrically fast:

jjL T ð�Þ �L ð�ÞjjTV � M�T ; T ¼ 1; 2; 3; . . .

for some � < 1 and M <1, where jj � jjTV is the total variation distance

between two probability measures.

Proposition 8 asserts that the rate of convergence in Proposition 4 is ex-

ponential. Therefore, one would expect that the convergence of L Tð�Þ to the

stationary distribution L ð�Þ is very fast on an evolutionary time-scale.

Proposition 9 (Selection of the optimal behavior (Robson, 1996a)).

Suppose the optimal behavior without mutation is f � and �ðf �Þ > 0 (see

Proposition 1). Under Assumptions 1�3, suppose the corresponding element

of f � in the vectoryt is y
�.For any small probability �p > 0 and positive constant

�� > 0, there exists �� 2 ð0; 1Þ such that, for all mutation rates � 2 ð0;��Þ, we have
PL ðy � � 1� ��Þ > 1� �p

with respect to the limit distribution L .

1The support of L ð�Þ is de¯ned to be the set of all points y 2 Y for which every open
neighborhood of y has positive measure.
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Proposition 9 asserts an important property of L : f � without mutation

again dominates the population with mutation in evolution with arbitrarily

high probability, provided that the mutation rate is small enough. However,

explicit calculation of the stationary distribution is di±cult. Section A.3

discusses a simulation experiment to understand the limit stationary distri-

bution L .

A.3. Simulation for the limit distribution

of population proportions

Let's consider an example to show how the limit distribution of population

proportions behaves. With �ðxa; xbÞ given in Table A.1, we study a system

with six behaviors f 2 f0; 15 ; 25 ; . . . ; 1g.
Figures A.1(a)–A.1(c) show the proportion of each behavior in the entire

population as the number of generation increases in one simulation. Without

mutation, the proportion of di®erent behaviors converges almost surely. With

positive mutation rates, the population proportion vector is stochastic even

in the long run.

Figures A.1(d) and A.1(e) show the limit distribution of population

proportions for mutation rates � ¼ 0:01 and 0.05. Each subplot shows the

histogram of three behaviors in the last generation T ¼ 500 with 1,000

simulation paths: the optimal behavior f � ¼ 0:8, and two suboptimal behaviors

f ¼ 0:6; f ¼ 1. We only plot three representative behaviors for simplicity.

From the histogram, it is clear that f � ¼ 0:8 corresponds to the optimal

behavior. As the mutation rate gets smaller, the probability that f � ¼ 0:8

dominates the entire population gets closer to 1.

Furthermore, the ¯nal stationary distribution does not behave like normal

because of the heavy tailness observed in the simulation. In particular, a

Kolmogorov–Smirnov test of normality on the distribution of f � ¼ 0:8 pro-

portion gives p-value = 1:08� 10�50, rejecting the normality hypothesis.

Finally, although it is hard to show the evolution of the complete distri-

bution of normalized population vector (5) in one ¯gure, Figures A.1(f) and

Table A.1. Probability table for the sim-
ulation of asymptotic population dynamics.

State 1 State 2

Action prob. p ¼ 0:8 prob. 1� p ¼ 0:2
a xa ¼ 3 xa ¼ 0
b xb ¼ 0 xb ¼ 3
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(a) 1 path, � ¼ 0
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(b) 1 path, � ¼ 0:01
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(c) 1 path, � ¼ 0:05 (d) limit distribution, � ¼ 0:01
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(f) average path, � ¼ 0:01
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(g) average path, � ¼ 0:05

Fig. A.1. Simulation for the limit distribution of population proportions. (a): simulation of
one evolution path without mutation. (b): simulation of one evolution path with mutation
� ¼ 0:01. (c): simulation of one evolution path with mutation � ¼ 0:05. (d): simulation of limit
distribution of 1,000 evolution paths with mutation � ¼ 0:01; only f ¼ 0:6; 0:8; 1 are shown.
(e): simulation of limit distribution of 1,000 evolution paths with mutation � ¼ 0:05; only
f ¼ 0:6; 0:8; 1 are shown. (f): sample paths averaged over 1,000 simulation paths with muta-
tion � ¼ 0:01. (g): sample paths averaged over 1,000 simulation paths with mutation � ¼ 0:05.
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A.1(g) show the proportion of each behavior in the entire population aver-

aged over 1,000 simulation paths. It is clear that the expectation of the

distribution converges quickly, and the optimal behavior without mutation

again dominates the population in expectation. This supports our results in

Propositions 8 and 9.

A.4. Proofs

Lemma 1. The proof generalizes the discussion in Caswell (2001)

pp. 371�372. Let A ¼ ðaijÞðKþ1Þ�ðKþ1Þ be any matrix drawn under

Assumptions 1�3. If A is strictly positive, then �ðAÞ < 1. If A is not strictly

positive, because Pðxa > 0 or xb > 0Þ ¼ 1, A must be a strictly positive

matrix except for the 1st column or the ðK þ 1Þth column (but not both).

Suppose without loss of generality that the 1st column of A is 0 and the rest is

strictly positive, and it su±ces to prove �ðAÞ < 1 in this case.

Now let xðtÞ ¼ ðxiðt þ 1ÞÞKþ1
i¼1 and yðtÞ ¼ ðyiðt þ 1ÞÞKþ1

i¼1 be positive vectors

that are not proportional to each other, and xðt þ 1Þ ¼ A � xðtÞ and

yðt þ 1Þ ¼ A � yðtÞ. Then

xiðt þ 1Þ
yiðt þ 1Þ ¼

P
j aijxjðtÞP
k aikykðtÞ

¼
X
j

aijyjðtÞP
k aikykðtÞ

� �
xjðtÞ
yjðtÞ

¼
X
j

pij
xjðtÞ
yjðtÞ

;

where
P

jpij ¼ 1. A careful examination of pij yields that for any i,

pi1 ¼ 0; and pij > 0 for j ¼ 2; 3; . . . ;K þ 1:

Therefore, xiðtþ1Þ
yiðtþ1Þ is a positive weighted average of

xjðtÞ
yjðtÞ
n oKþ1

j¼2
, and this is true

for all i. Because xðtÞ and yðtÞ are not proportional to each other, there are

two possibilities:

(1) The ratios in
xjðtÞ
yjðtÞ
n oKþ1

j¼2
are all the same, but di®erent from x1ðtÞ

y1ðtÞ. In this

case exactly one of the following must be true:

min
j

xjðtÞ
yjðtÞ

<
xiðt þ 1Þ
yiðt þ 1Þ � max

j

xjðtÞ
yjðtÞ

; for all i;

or

min
j

xjðtÞ
yjðtÞ

� xiðt þ 1Þ
yiðt þ 1Þ < max

j

xjðtÞ
yjðtÞ

; for all i:
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(2) The ratios in
xjðtÞ
yjðtÞ
n oKþ1

j¼2
are not all the same. In this case, we have

min
j

xjðtÞ
yjðtÞ

<
xiðt þ 1Þ
yiðt þ 1Þ < max

j

xjðtÞ
yjðtÞ

; for all i:

In both (1) and (2), we have

dðxðt þ 1Þ;yðt þ 1ÞÞ < dðxðtÞ;yðtÞÞ:
That is, each multiplication by A contracts the distance between the two

vectors. Because the supremum in Birkho®'s contraction coe±cient (A.1) can

be taken over a compact set, we have �ðAÞ < 1 with probability 1.

Lemma 2. The mutation matrix M can be written as

M ¼ 1� 1þ 1

K

� �
�

� �
IKþ1 þ

�

K
1Kþ11

0
Kþ1;

where IKþ1 is the identity matrix of dimension ðK þ 1Þ � ðK þ 1Þ. Plugging
into (4) in Proposition 2 we get

nt ¼a:s:MFtnt�1 ¼ 1� 1þ 1

K

� �
�

� �
Ftnt�1 þ

�

K
Pt1Kþ1: ðA:2Þ

Note that the identity

1 0Ftnt�1 ¼ 1 0MFtnt�1 ¼ Pt

was used in order to obtain (A.2). Proceeding inductively from (A.2), we have

the desired result.

Proposition 1. See Brennan and Lo (2011) Proposition 1. Strong Law of

Large Numbers implies almost sure convergence (see also Brennan and

Lo (2011) Proof of Corollary 1).

Proposition 2. The proof is a simple generalization of Brennan and Lo (2011).

Let I f be aBernoulli variable de¯ned as inBrennan andLo (2011),which equals 1

with probability f and 0 otherwise. De¯ne \not mutation" indicator N and

\mutation from g to f " indicator M g!f :

N ¼ 1 with prob 1� �

0 with prob �;

�
M g!f ¼

1 with prob
�

K

0 with prob 1� �

K
:

8><
>:

In generation t, type f individuals come from type f individuals without

mutation and type gð6¼ f Þ individuals with mutation in generation t � 1.
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Consider them separately. From type f :

Xn f
t�1

i¼1

x f!f
i;t ¼

Xn f
t�1

i¼1

Ni;tI
f
i;t

0
@

1
Axa;t þ

Xn f
t�1

i¼1

Ni;tð1� I f
i;tÞ

0
@

1
Axb;t

¼a:s: ð1� �Þn f
t�1ðfxa;t þ ð1� f Þxb;tÞ

as n f
t�1 increases without bound. From type gð6¼ f Þ

X
g 6¼f

Xn g
t�1

i¼1

x g!f
i;t ¼

X
g 6¼f

Xn g
t�1

i¼1

M g!f
i;t I g

i;t

0
@

1
Axa;t þ

Xn g
t�1

i¼1

M g!f
i;t ð1� I g

i;tÞ
0
@

1
Axb;t

2
4

3
5

¼a:s: �

K

X
g 6¼f

n g
t�1ðgxa;t þ ð1� gÞxb;tÞ

as n g
t�1 increases without bound. Note that

n f
t ¼

Xn f
t�1

i¼1

x f!f
i;t þ

X
g 6¼f

Xn g
t�1

i¼1

x g!f
i;t

¼a:s:ð1� �Þn f
t�1ðfxa;t þ ð1� f Þxb;tÞ

þ �

K

X
g 6¼f

n g
t�1ðgxa;t þ ð1� gÞxb;tÞ:

(4) simply rewrites the above equation in matrix form.

Proposition 3. By Lemma 1 and Caswell (2001, p. 386, 14.22), demographic

weak ergodicity2 holds. In addition, ElogþjjA1jj <1 because xa and xb are

bounded, where logþjjA1jj ¼ maxf0; log jjA1jjg. Therefore, Assumption 4.2.1

in Tuljapurkar (1990) is satis¯ed, and Proposition 3 follows from Tuljapurkar

(1990, p. 26 (A)).

Proposition 4. Because the random matrices At are IID, Assumptions

4.2.1, 4.2.3, and 4.2.6 in Tuljapurkar (1990) are satis¯ed, and the conclusion

follows directly from Tuljapurkar (1990), p. 29 (J).

Proposition 5. Part (i) is standard result for single type branching process

in random environments (see Smith and Wilkinson (1969) Theorem 3.1 for

example). Part (ii) follows from Proposition 3 and Corollary 1.

2The de¯nition of demographic weak ergodicity is given in Caswell (2001, p. 383) and Tul-
japurkar (1990, p. 17). Essentially it means that the di®erence between the probability dis-
tributions of normalized population vectors resulting from any two initial populations, exposed
to independent sample paths of the stochastic environment, decays to zero.
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Proposition 6. To clarify notation, let x 1
a;j be the number of o®spring

generated by �1 for action a in the jth generation; x 2
b;j the number of o®spring

generated by �2 for action b in the jth generation. Table A.2 calculates the

number of individuals of both behaviors along evolution, starting with one

individual of each type. From the last line of Table A.2, we have

n �;Total
k ¼ �2k�1ð1� �Þ

Pk
i¼1

ðT 1
i þT 2

i Þ�2k Y
Pk
i¼1

T 1
i

j¼1

x 1
a;j

Y
Pk
i¼1

T 2
i

j¼1

x 2
b;j :

Therefore,

1

k
logn �;Total

k ¼ 2k�1

k
log�þ 1

k

Xk
i¼1

ðT 1
i þT 2

i Þ�2

 !
logð1� �Þþ 1

k

X
Pk
i¼1

T 1
i

j¼1

logx 1
a;j

þ 1

k

X
Pk
i¼1

T 2
i

j¼1

logx 2
b;j!a:s:2 log�þðE½T 1þT 2��2Þ logð1� �Þ

þ E½T 1�E½logx 1
a �þE½T 2�E½logx 2

b � ¼ 2 log
�

1� �
þ E½T 1þT 2� logð1� �ÞþE½T 1�E½logx 1

a �þE½T 2�E½logx 2
b �;

where \!a:s:" denotes almost sure convergence and follows from Strong Law of

Large Numbers as k increases without bound. Since the value of � that

maximizes the population size n �;Total
k is also the value of � that maximizes

k�1 logn �;Total
k , the above analysis implies that this maximum converges in

probability to the maximum of

�ð�Þ ¼ 2 log
�

1� �
þ E½T 1 þ T 2� logð1� �Þ þ E½T 1�E� 1 ½log xa�

þ E½T 2�E�2 ½log xb�;

where 0 < � < 1. Take the ¯rst and second derivatives of the above equation:

� 0ð�Þ ¼ 2

�
� E½T 1 þ T 2� � 2

1� �
;

� 00ð�Þ ¼ � 2

�2
� E½T 1 þ T 2� � 2

ð1� �Þ2 :

Note that T 1 and T 2 are positive integers, so E½T 1 þ T 2� � 2. Therefore, the

second derivative is always negative for 0 < � < 1. In addition,
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� 0ð0þÞ > 0; � 0ð1�Þ < 0, which implies that �ð�Þ has a unique maximum in

ð0; 1Þ at � 0ð�Þ ¼ 0. Solve for � and we get the desired result.

Proposition 7. Because the random matrices At are IID, Assumptions

4.2.1 and 4.2.3 in Tuljapurkar (1990) are satis¯ed, and the conclusion follows

directly from Tuljapurkar (1990, p. 27 (F )).

Proposition 8. We utilize Meyn and Tweedie (2009, p. 411, Theorem

16.2.5): If fytg1
t¼0 is a  -irreducible

3 and aperiodic T-chain4, and if the state

space Y is compact, then fytg1
t¼0 is uniformly ergodic.

The uniqueness of the stationary distribution L in Proposition 4 implies

that fytg1
t¼0 is aperiodic, so it su±ces to prove that fytg1

t¼0 is a  -irreducible

T-chain.

Take  ¼ L to be the stationary distribution of fytg1
t¼0, then for all

y 2 Y and B � Y , whenever  ðBÞ > 0, there exists some n > 0, possibly

depending on both y and B, such that the n-step transition probability

pnðy;BÞ > 0. Then it follows from Meyn and Tweedie (2009, p. 82, Propo-

sition 4.2.1(ii)) that fytg1
t¼0 is  -irreducible.

Furthermore, the one-step transition probability p1ð�;OÞ is a lower semi-

continuous function for any open set O � Y . Remember that the support of

 is assumed to have non-empty interior. Then it follows from Meyn and

Tweedie (2009, p. 124, Theorem 6.0.1(iii)) that fytg1
t¼0 is a T-chain.

Finally, the uniform ergodicity of the Markov chain fytg1
t¼0 follows from

Meyn and Tweedie (2009, p. 411, Theorem 16.2.5).

Proposition 9. This Proposition is essentially due to Robson (1996a, p. 413,

Theorem 2(iii)).

Corollary 1. The lower bound is obvious by simply considering the growth of

non-mutated type f � individuals. To prove the upper bound, ¯rst note that

1 0Ftyt�1

¼ 1 0

f1xa;t þ ð1� f1Þxb;t � � � 0

..

. . .
. ..

.

0 � � � fKþ1xa;t þ ð1� fKþ1Þxb;t

0
BBB@

1
CCCA

yt�1ð1Þ
..
.

yt�1ðK þ 1Þ

0
BBB@

1
CCCA

¼
XKþ1

i¼1

yt�1ðiÞðfixa;t þ ð1� fiÞxb;tÞ ¼ ð�t�1xa;t þ 	t�1xb;tÞ;

3The de¯nition of  -irreducibility can be found in Meyn and Tweedie (2009, p. 82).
4The de¯nition of T-chains can be found in Meyn and Tweedie (2009, p. 124).
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where

�t�1 ¼
XKþ1

i¼1

yt�1ðiÞfi; 	t�1 ¼
XKþ1

i¼1

yt�1ðiÞð1� fiÞ;

and �t�1 þ 	t�1 ¼ 1. Note that Ft and yt�1 are independent in (7), and �t�1

and 	t�1 are constants conditioning on yt�1, so one have:

�� ¼ EL fE�½logð1 0Ftyt�1Þ�jyt�1g ¼ EL fE�½logð�t�1xa;t þ 	t�1xb;tÞ�jyt�1g
� EL fE�½logðf �xa;t þ ð1� f �Þxb;tÞ�jyt�1g ¼ EL f�ðf �Þjyt�1g ¼ �ðf �Þ;

where the following fact is used for the inequality

f � ¼ arg max
0�f�1

E�½logðfxa;t þ ð1� f Þxb;tÞ�:

Corollary 2. The conclusion follows immediately from Proposition 6 by

replacing E½T 1 þ T 2� by 2 � E½T �.
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