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A numerical method in Fourier-space is developed to solve the polymeric self-consistent
field equations. The method does not require a priori symmetric information. More signif-
icantly, periodic structure can be adjusted automatically during the iteration process. In
this article, we apply our method to AB linear diblock copolymer melt, thus reproduce
all known stable phases, and reveal some meta-stable phases. It is worthy to point out that
we also give an efficient strategy to estimating initial values for diblock copolymer system.
Finally, by comparing with Matsen–Schick’s method, we show some advantages of our
method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

During the last decades, the various and fascinating ordered phases of block copolymer systems have been studied exten-
sively [1–3]. The equilibrium morphology formed in periodically ordered state depends on compositions, interaction be-
tween distinct blocks, particular molecular architecture, and also the period structure. Theoretically, self-consistent field
theory (SCFT) has proven itself to be a particularly successful framework for studying the phase behavior of block copoly-
mers. It is a mean-field theory. By finding the solutions of SCFT equations, we can get the equilibrium order microstructures
of block copolymers.

Due to the nonlinearity and the presence of multiple solutions, solving the SCFT analytically is a challenging problem. One
successful approach is to apply numerical methods to solving the SCFT equations. It should be noted that the computational
box can influence the final equilibrium morphologies [4]. Generally, the numerical methods can be classified into two cat-
egories. One type is calculated in Fourier-space. Under an assumption of symmetry, Matsen and Schick [5] expanded the
spatially varying functions in a finite set of basis functions, and obtained the first exact numerical phase diagram of
three-dimensional ordered diblock copolymer phases. Then, based on this method, Tyler and Morse [6] minimized the SCFT
free energy with respect to the computational box parameters according to a certain crystal system. Since this method
assumes the symmetry and period structure of possible phases which determines the morphology of the solutions, it can
not be used to discover new phases. Recently, Zhang and Zhang [7] have proposed an efficient numerical method based
on Landau–Brazovsikii model. It does not require the assumption of the microphase symmetry, and the period structure
can be adjusted automatically. Guo et al. [8] have proposed a generic Fourier-space approach which does not need a priori
knowledge of the structure of solutions and has been capable of discovering new equilibrium morphologies.
. All rights reserved.

fax: +86 10 6276 7146.

ang).

http://dx.doi.org/10.1016/j.jcp.2010.06.038
mailto:pzhang@pku.edu.cn
http://www.math.pku.edu.cn/pzhang
http://dx.doi.org/10.1016/j.jcp.2010.06.038
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


K. Jiang et al. / Journal of Computational Physics 229 (2010) 7796–7805 7797
The other type is calculated in real space. A well known method called combinatorial screening algorithm was proposed
by Drolet and Fredrickson [9]. The advantage of this method is that it does not require a priori assumption of symmetry, and
can be used to discover new phases. A pseudospectral technology, second order operator splitting method for solving the
modified diffusion equation was introduced by Rasmussen and Kalosakas [10]. A higher order and unconditionally stable
semi-implicit scheme can be found in [15]. It’s a useful method, especially for very sharped interface systems. These ap-
proaches have improved the computational efficiency. Based on density functional theory, Bohbot-Raviv and Wang [4] pro-
posed a numerical method involving minimizing a free energy functional with respect to the composition profile and the size
of the calculation area. For the real space methods, the calculation area is normally set as a cubic in 3D or a square in 2D,
whereas the period of one ordered phase is not likely to be a cubic or a square. Thus the calculation area has to be set as
large as possible, which significantly increases the computational complexity.

There are also several iteration methods have been devised to find the saddle-points. In the beginning, the nonlinear equa-
tion system methods have been chosen to update the field functions, such as Broyden method [5] and Newton–Raphson meth-
od [6]. The disadvantage of these methods is that they have larger computational complexity. Then, a set of nonlinear
optimization algorithms is introduced to solve SCFT equations. Some researchers [9,11] brought in a Picard-type iteration
scheme, which has been proved to be usable, but slow and sometimes unstable [12]. To increase the stability, Tzeremes
et al. [13] added density information into the Picard iteration scheme. To accelerate its convergence, Thompson et al. [12] pro-
posed Anderson mixing, and Ceniceros et al. [14] developed a class of semi-implicit methods and multilevel strategy. It should
be pointed out that semi-implicit methods and multilevel strategy are extremely efficient approaches for finding saddle-points.

Our research aims at developing a method in Fourier-space that really does not need a priori symmetric information of
basis functions, and the size and shape of the computational box can be adjusted automatically according to the period
microstructures during the iteration process. The number of basis functions is decided by the given numerical accuracy.
The numerical method based on Landau–Brazovsikii model [7] is the starting point of our study. The diblock copolymer melt
has been extensively studied with SCFT [1,3], so it is suitable for us to display our method. Because of the presence of multi-
ple solutions of the nonlinear equation system, the solutions are sensitive to initial values. An appropriate method of esti-
mating initial values is given to find the patterns quickly. Furthermore, we compare our approach with Matsen–Schick’s
method (MSM) [5,6]. It is demonstrated that our method generates the same ordered phases as MSM, and the way to adjust
the computational box in our method is not only more effective than that of MSM, but also more easily to reach the mini-
mum value of free energy density in some cases. Meanwhile, the current method can be extended to other molecular archi-
tecture system.

The rest of the paper is organized as follows. In Section 2, we present the SCFT of diblock copolymer melt. In Section 3, we
propose our numerical method. To verify the validity of our method, we report our numerical results and also compare it
with MSM in Section 4. Finally, we give our conclusion in Section 5.

2. Self-consistence field theory

In this section, we will give a brief introduction to the self-consistent field theory of an incompressible diblock copolymer
melt, more details can be found in [2,3,5,15]. We consider a system with volume V of n diblock copolymers each having A and
B arms joined together with a covalent bond. The total degree of polymerization of a diblock copolymer is N, and the
A-monomer fraction is f, correspondingly, the B-monomer fraction is 1 � f. The field-theoretic free energy density functional
for the diblock copolymer melt is given by
h½lþ;l�� ¼
1
V

Z
dr �lþ þ

1
vN

l2
�

� �
� logQ½lþ;l��: ð1Þ
where v is the Flory–Huggins segment–segment interaction parameter. l+(r) and l�(r) can be viewed as fluctuating pres-
sure and exchange chemical potential fields, respectively. Q is the single-chain partition function, which is determined by
Q ¼ 1
V

Z
drqðr;1Þ: ð2Þ
The forward propagator q(r,s) represents the probability density that the chain of contour length s has its end at position r,
where the variable s is used to parameter each copolymer chain, s = 0 represents the tail of the A block and s = f is the junc-
tion between the A and B blocks. From the standard Gaussian chain model [1,3], we know that q satisfies the modified dif-
fusion equation
@

@s
qðr; sÞ ¼ R2

gr2qðr; sÞ �xðr; sÞqðr; sÞ;

qðr;0Þ ¼ 1;
ð3Þ
and
xðr; sÞ ¼
xAðrÞ ¼ lþðrÞ � l�ðrÞ; 0 6 s 6 f ;

xBðrÞ ¼ lþðrÞ þ l�ðrÞ; f < s 6 1;

(
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where xA(r), xB(r) are the external fields, which act on A and B monomers respectively, and Rg is the radius of gyration.
The normalized segment density operators in the sense of ensemble average /A and /B at r can be written as
/AðrÞ ¼
1
Q

Z f

0
dsqðr; sÞqþðr;1� sÞ; ð4Þ

/BðrÞ ¼
1
Q

Z 1

f
dsqðr; sÞqþðr;1� sÞ: ð5Þ
The reverse propagator, q+(r,s), obeys (3) but x satisfies
xðr; sÞ ¼
xBðrÞ; 0 6 s 6 1� f ;
xAðrÞ; 1� f < s 6 1:

�

Minimizing the free energy density functional with respect to the fields l+ and l�, we have SCFT equations
dh
dlþ

¼ /Aðr;l�Þ þ /Bðr; l�Þ � 1 ¼ 0; ð6Þ

dh
dl�

¼ /Bðr;l�Þ � /Aðr; l�Þ þ
2l�
vN
¼ 0: ð7Þ
Our task is to find as many equilibrium states as possible by solving the SCFT equations.

3. Numerical method

As mentioned above, the computational box should be treated as variable in the method, therefore we add them to the
spatially varying functions. Before doing this, a short introduction to the Bravais lattice and reciprocal lattice is necessary.
The Bravais lattice is defined by Rl = l1a1 + l2a2 + l3a3, l1, l2, l3 2 Z, and the primitive vectors are denoted by
a1 = (a11,a12,a13), a2 = (a21,a22,a23), a3 = (a31,a32,a33). The corresponding reciprocal lattice primitive vectors are
b1 = (b11,b12,b13), b2 = (b21,b22,b23), b3 = (b31,b32,b33) and {G} = {GmnkjGmnk = mb1 + nb2 + kb3}, where m,n,k 2 Z, are the reci-
procal lattice. These two sets of primitive vectors satisfy ai�bj = 2pdij, where i, j = 1,2,3. For brevity, element of {G} is some-
times written as G instead of Gmnk, and B ¼ ðb1;b2;b3Þ.

The equilibrium phases are periodic, free energy density functional depends not only on fields l±(r), composition, but also
on the computational box. All spatially varying functions are periodic on the primitive lattice, and the plane waves {eiG�r},
G 2 {G}, which form a basis for the function space {f(rjf(r + Rl)) = f(r)}. The periodic function can be expanded as
f ðrÞ ¼
X
fGg

fGeiG�r: ð8Þ
Thus all periodic functions are decided by the Fourier coefficients and reciprocal vectors B.
Since for any G1 + G2 + � � � + Gm – 0, m 2 N, we have
Z

X
eiðG1þG2þ���þGmÞ�r ¼ 0; ð9Þ
the single-chain partition functional can be written as
Q ¼ 1
V

Z
drqðr;1Þ ¼ q0ð1Þ; ð10Þ
and the free energy density functional h is
h½l�;G;B� ¼ �lþ;0 þ
1
vN

X
G

l�;Gl�;�G � log q0ð1Þ: ð11Þ
Eqs. (6) and (7) can be rewritten as
dh
dlþ;G

¼ /A;G þ /B;G � d0;G ¼ 0; ð12Þ

dh
dl�;G

¼ /B;G � /A;G þ
2l�;G
vN

¼ 0; ð13Þ
and Eqs. (4) and (5) turn to be
/A;G ¼
1

q0ð1Þ

Z f

0
ds

X
G1þG2¼G

qG1
ðsÞqþG2

ð1� sÞ; ð14Þ

/B;G ¼
1

q0ð1Þ

Z 1

f
ds

X
G1þG2¼G

qG1
ðsÞqþG2

ð1� sÞ: ð15Þ
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The modified diffusion Eq. (3) is reduced to
dqG

ds
¼

P
G1

AGG1 qG1
ðsÞ; 0 6 s 6 f ;

P
G1

BGG1 qG1
ðsÞ; f < s 6 1;

8><
>: ð16Þ
where
AGG1 ¼ �R2
g jGj

2dGG1 �xA;G�G1 ;

BGG1 ¼ �R2
g jGj

2dGG1 �xB;G�G1 :
The initial condition is qG(0) = dG0. The Fourier coefficients qþG of reverse propagator satisfy the similar expression. In order to
achieve the equilibrium state, we require a set of Fourier coefficients {l±,G} and primitive reciprocal vectors B that can min-
imize the free energy density. This can be separated into two problems.

1. Given B, minimize the free energy density to find saddle-points {l±,G};
2. Given a set of {l±,G}, find the reciprocal vectors of B to minimize the free energy density.

Both problems have to be solved simultaneously if {l±,G} and B are solutions. In Sections 3.1 and 3.2, we will give the meth-
ods to solve the above two problems, respectively.

Theoretically, the set of basis functions is infinite. In practice, however, the spatially varying functions have to be ex-
panded into finite basis functions, which means
f ðrÞ � f ðNÞðrÞ ¼
X
m;n;k

f ðGmnkÞeiGmnk �r; ð17Þ
where jmj 6 N, jnj 6 N, jkj 6 N, and m,n,k 2 Z. In the expansion, the number of Fourier components is (2N + 1)3.

3.1. Given B, find saddle-point l±,G

We choose the semi-implicit method [14] to find saddle point. More iteration methods can be found in [3,9,10,12–14].
The semi-implicit method in Fourier-space can be expressed as
ljþ1
þ;G � lj

þ;G

Dt
¼ �ðĝAA þ 2ĝAB þ ĝBBÞljþ1

þ;G þ
dh½lj

�;G�
dlþ;G

þ ðĝAA þ 2ĝAB þ ĝBBÞlj
þ;G; ð18Þ

ljþ1
�;G � lj

�;G

Dt
¼ � 2

vN
ljþ1
�;G �

dh½ljþ1
þ;G;l

j
�;G�

dlj
�;G

þ 2
vN

lj
�;G; ð19Þ
where
ĝAA ¼
2

G4 ½expð�G2f Þ þ G2f � 1�; ð20Þ

ĝBB ¼
2

G4 ½expð�G2ð1� f ÞÞ þ G2ð1� f Þ � 1�; ð21Þ

ĝAB ¼
1

G4 ½ð1� expð�G2f ÞÞð1� expð�G2ð1� f ÞÞ�; ð22Þ
and /j
A;G; /j

B;G can be calculated by Eqs. (14) and (15) through composite Simpson’s rule. Because the interface is not as sharp
as in Ref. [15], the pseudospectral method,second-order operator-splitting scheme [10] was chosen to calculate qG(s) and
qþG ðsÞ. A higher order scheme can be found in [15].

When calculating /A,G and /B,G, we use fast Fourier transform (FFT) to reduce the computational complexity. The key point
is how to avoid the aliasing error in valuating the convolution sum

P
G1þG2¼GqG1

ðsÞqþG2
ð1� sÞ. In our code, we use phase shift

method to remove the error. The detail of the techniques can be found in [16].

3.2. Given l±,G, generate B

If B is one of the solutions, the first derivatives of the free energy functional with respect to bmn should be zero for
m,n = 1,2,3. We can choose a proper coordinate system such that b12 = 0, b13 = 0, b23 = 0, b11 – 0, b22 – 0, b33 – 0. We update
B through steepest descent method as
bjþ1
mn ¼ bj

mn � a
@h½B�
@bmn

; ð23Þ
where m,n = 1,2,3, m 6 n. It is difficult to calculate @ h/@bmn analytically, whereas we calculate it numerically. The value of a
can be calculated by Armijo–Goldstein inexact line search algorithm [17]. Therefore, the size and shape of computational box
can be automatically adjusted during the process of minimizing the free energy density.
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Now, for a given N, we can obtain flðNÞ�;Gg and B according to the iteration process referred as Procedure I, which is spec-
ified in the following four steps.

Procedure I

Step 1. Given initial values fl�;Gg; B and set m = 1, then calculate the free energy density hm.
Step 2. Fixed B, calculate {l±,G} by the method described in Section 3.1.
Step 3. Adjust B and get the free energy density hm+1 by the method described in Section 3.2.
Step 4. Calculate the free energy density hm+1, if jhm+1 � hmj > e1, then set hm = hm+1, m = m + 1, go back to step 2.

3.3. The way to find appropriate N

Now, for a given N, we can calculate l±,G and B by Procedure I. However, spectral expansion f(N) is just an approximation of
f(r), we have the problem that how large is enough for N to make f(N) a good estimate of f(r). If N is too large, the computa-
tional complexity may go beyond the computer’s capacity; if N is too small, f(N) may be far away from f(r). Getting the appro-
priate N within a tolerance is an adaptive process which is referred as Procedure II.

Procedure II

Step 1. Starting from a given N and reasonable initial values of lðNÞ�;G;B
ðNÞ, apply Procedure I to generate lðNÞ�;G;B

ðNÞ and the
free energy density value h½lðNÞ�;G;BðNÞ�.
Step 2. Use lðNÞ�;G and BðNÞ as the initial estimate of N + k modes problem, and then apply Procedure I to generate lðNþkÞ

�;G , the
corresponding BðNþkÞ, and the free energy density h½lðNþkÞ

�;G ;BðNþkÞ�.
Step 3. Repeat the above step till
h½lðNþkÞ
�;G ;BðNþkÞ� � h½lðNÞ�;G;BðNÞ�

��� ��� < e2:
It means, the (N + k), which makes the difference of the free energy density between N modes and (N + k) modes less than a
given small number e2, is the appropriate one. In practice, we set k = 1 and e1 = e2 = 10�4.
3.4. The strategy to estimating good initial values

For Fourier-space method, estimating initial values is to give the initial Fourier coefficients of l�;Gmnk
according to Eqs. (12)

and (13), while lþ;Gmnk
are set as zero. In other words, we should give the initial reciprocal vectors Gmnk, only on which the

Fourier coefficients are nonzero. In the beginning, we set initial values randomly and executed our method repeatedly. The
lamellar, cylinder phases usually appeared, whereas the complex structures such as gyroid, Fddd phases seldom emerged.
This implies that it is hard to find some required equilibrium states if we don’t have any information about them because
of the nonlinearity and the presence of multiple solutions. Some authors [12,18] also met the same problem. Therefore,
choosing the suitable initial values should be investigated.

Generally, it is difficult for us to find the appropriate initial values for a nonlinear problem. Fortunately, the microscopic
equilibrium state structures of the diblock copolymer melt demonstrate certain crystal symmetry. Based on the fact that the
initial reciprocal lattice vectors can be obtained from Landau theory of block copolymers [19–21] or the crystal structure
factor table [22]. The Landau theory of block copolymer is applied to weakly-segregated melts, and gives reciprocal lattice
vectors that belong to different stable phases. Leibler [19] has given these reciprocal lattice vectors of lamellar, hexagonal
and body-centered cubic spheres (BCC) phases. The reciprocal lattice vectors of gyroid and face-centered cubic spheres
(FCC) phases were given by Erukhimovich [20] and Fddd phase has been studied by Ranjan and Morse [21]. An alterative
approach is directly using the crystal structure factor to obtain the reciprocal lattice vectors. However, this method does
not tell us the main reciprocal lattice vectors required to expand the spatially varying functions initially. Maybe, we can
use basis functions as many as possible in the beginning to depict the symmetry of ordered phases, but it brings more com-
putational burden in adjusting the Fourier coefficients.

In this paper, we restrict our attention to the three-dimensional stable phases, i.e. BCC, FCC, gyroid and Fddd. For these
stable ordered phases, the initial reciprocal vectors of l�,Gmnk are summarized in Table 1. In view of the centrosymmetry
of these phases, we set l�;G �m�n�k ¼ l�;Gmnk at the same time. In Landau theory of block copolymer [20,21], the reciprocal vectors
of FCC phase are {111} (including ð111Þ; ð11 �1Þ; ð1�11Þ; ð1�1�1Þ), whereas from our experience, the final structure would not
be the FCC phase if only the vectors {111} are used as initial ones. So we use crystal structure factor of Fm�3m [22] to get the
initial reciprocal vectors, as shown in Table 1. These estimating initial values are suitable to the weakly-segregated melt. Let
the weakly-segregated results be the initial values, then the ordered phases at strong segregation can also be discovered. Of
course, the approach of estimating initial values can be extended to real space method if we note Eq. (17).

From another point of view, the symmetric information has been used to estimate initial values. However, we do not
change the essential feature of the method that it does not need a priori symmetry information of basis functions. The



Table 1
The initial reciprocal vectors Gmnk of l�,Gmnk for BCC, FCC, gyroid and Fddd phases.

Stable phases The initial reciprocal vectors Gmnk

BCC ð01 �1Þ; ð�1 01Þ; ð1 �10Þ; ð0 �1 �1Þ; ð�10 �1Þ; ð�1 �1 0Þ
FCC ð111Þ; ð11 �1Þ; ð1 �1 1Þ; ð1 �1 �1Þ; ð222Þ; ð22 �2Þ; ð2 �22Þ

ð2 �2 �2Þ; ð220Þ; ð2 �20Þ; ð202Þ; ð20 �2Þ; ð02 2Þ; ð02 �2Þ
Gyroid ð�211Þa, ð�2 �1 �1Þa, ð21 �1Þa, ð2 �11Þ; ð1 �21Þ; ð12 �1Þ

ð�1 �2 �1Þa, ð�121Þa, ð11 �2Þ; ð1 �12Þa, ð�1 12Þ; ð�1 �1 �2Þ
Fddd ð111Þ; ð11 �1Þ; ð1 �1 1Þ; ð1 �1 �1Þ; ð220Þ; ð2 �20Þ; ð004Þ

a Denotes the sign of Fourier coefficients is opposite.
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approximation space of our method is still the whole space. Our method can be used to discover new phases. Good initial
values will help us accelerate the process to find the required solutions.

We will give some remarks on this numerical method. A similar numerical method has been applied to the Landau–Braz-
ovsikii model by Zhang and Zhang [7]. However, it differs from ours. In Landau–Brazovsikii model, the free energy function is
just a function of composition profile, and the first derivatives of the free energy function with respect to parameters of com-
putational box can be calculated analytically. Meanwhile, the tactics to estimate initial values for diblock copolymer melt
was not given in [7].

4. Numerical results

4.1. Efficiency

The efficiency of our method will be shown in the following aspects: the stable phases can be captured; the computa-
tional box can be adjusted automatically and the meta-stable phases can also be discovered. The procedure II was run on
Inter(R) Core(TM)2 Duo 2.66 GHz CPU with memory 2 G.

By applying these initial values above-mentioned and executing Procedure II, the different equilibrium stable phases can
be discovered, as is shown in Fig. 1. The corresponding average time to convergence and the modes required are given in
Table 2.

In order to show that the computational box can be adjusted automatically, we take gyroid phase calculated in an arbi-
trary box as an example. Other phases also have similar results. Fig. 2 shows the change tendency of the length of a1, a2, a3,
the corresponding angles of h1, h2, h3. We can find that computational box converges to a cubic. The final morphology pro-
duced is shown in the third image from left in Fig. 1.

We also discovered some meta-stable phases by inputting different initial values. By fixing coordinate vN = 14.0, f = 0.4
and applying our method, three meta-stable phases have been captured, as shown in Fig. 3. The left image in Fig. 3 shows
Fig. 1. Stable phases, from left to right, BCC phase when vN = 14.0, f = 0.3; FCC phase when vN = 17.67, f = 0.235; gyroid phase when vN = 14.0, f = 0.4; Fddd
phase when vN = 12.0, f = 0.43, respectively.

Table 2
Modes required and CPU consuming of stable phases.

BCC FCC Gyroid Fddd

N 4 5 9 9
CPU time (s) 21 227 242 7341
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BCC3 phase as mentioned in [20]. A space group symmetry Fd�3m phase is shown in the middle of Fig. 3. The right diagram in
Fig. 3 shows perforated-lamellar phase.
4.2. Compare with Matsen–Schick’s method

Now we make some comparisons between Matsen–Schick’s method (MSM) and our method (SMEP). Before that, we give
a brief introduction to MSM.
4.2.1. An introduction to MSM
Here, we just address the differences in Fourier expansion from the standpoint of numerical computation. MSM is a Spec-

tral-Galerkin method, more details can be found in [5,6,23]. The modified diffusion Eq. (3) is expanded as
dqi

ds
¼

�R2
gkiD

�2qi �
P
j;k

xA;jqkCijk; 0 6 s 6 f ;

�R2
gkiD

�2qi �
P
j;k

xB;jqkCijk; f < s 6 1;

8>><
>>: ð24Þ
where Cijk ¼ V�1 R fiðrÞfjðrÞfkðrÞdr; fiðrÞ; i ¼ 1;2;3; . . ., are normalized orthonormal basis functions each possessing the sym-
metry of the phase obtained in [22], ki is the eigenvalues of the Laplacian operator:r2fi(r) = �kiD

�2fi(r), and D is a length scale
for the phase. The reverse propagator q+(r,s) has the similar expression. The density operators (4) and (5) can be written as
/A;i ¼
1

q0ð1Þ

Z f

0

X
j;k

qjqkCijk; ð25Þ

/B;i ¼
1

q0ð1Þ

Z 1

f

X
j;k

qjqkCijk: ð26Þ
It should be noted that the FFT technology can not be used to solve modified diffusion Eq. (24) and density functions Eq.
(25)and (26) due to the special basis functions.

In the following, the same iteration process as described in Section 3 was used for MSM including adjustment of the com-
putational box. However, the number of computational box parameters to be adjusted depends on the crystal system, e.g. the
length of the side of a cubic crystal, the length of the three orthogonal edges of an orthorhombic crystal, or the three angles



K. Jiang et al. / Journal of Computational Physics 229 (2010) 7796–7805 7803
and three lengths of a triclinic crystal [6]. It differs from SMEP that all the parameters of computational box can be adjusted
freely during the iteration process.
4.2.2. Comparison results
In the section, we will compare the results of the two type of spectral methods. We focus our attention on BCC and gyroid

phases. Because BCC and gyroid phases both belong to cubic crystal system, only the length of any one edge of cubic is ad-
justed in MSM. In order to compare the two numerical methods, the same initial conditions. For MSM, the reciprocal vectors
(110) and (211) were set as the initial vectors for BCC phase and gyroid phase, respectively. The initial reciprocal vectors for
SMEP were given in Table 1. The cubic with length of edge 4.45Rg and length of edge 8.7Rg were set as the initial computa-
tional box for BCC and gyroid phases, respectively, for both methods. The error tolerance, e1 and e2, of these two methods
were both set as 10�4. In calculation, we fixed the coordinates at vN = 14.0, f = 0.3 for BCC phase and vN = 14.0, f = 0.4 for
gyroid phase.

After executing Procedure II, we can obtain the similar images, BCC and gyroid phases, as shown in Fig. 1 by two methods.
The computational box converges to a cubic in SMEP. A more detailed comparison is mapping the Fourier coefficients cal-
culated by SMEP to those corresponding the Bragg reflections of morphology [22]. We found that the ordered phases, BCC
and gyroid phases, obtained by SMEP belong to corresponding space group, Im�3m and Ia�3d, respectively. The result is also
consistent with Guo et al. [8]. The deviation of Fourier coefficients of /A;Gmnk

between MSM and SMEP for BCC and gyroid
phases is shown in Table 3. The index of reciprocal vector (mnk) in Table 3 indicates that the reciprocal vectors is within
a star of point group symmetry m�3m both for BCC and gyroid phases. Therefore, MSM and SMEP can calculate the same or-
dered phases with delicate difference in Fourier coefficients.

Table 4 shows the eventually convergent results: the free energy density and the length of the edge of computational box.
From Table 4, we observe that the free energy density obtained by SMEP is lower than that of MSM. It might be related with
the Fourier coefficients and the computational box. The derivation in Fourier coefficients between MSM and SMEP is small,
similarly as shown in Table 3. Therefore, the most possible reason is the difference of computational box, which is also men-
tioned in [4,6]. SMEP can make free energy density converge to its minimum value easily.

Table 5 shows the number of iterations required of Procedure I, including finding the saddle-points of l± and adjusting the
computational box. In Table 5, we find the method to adjust computational box in SMEP is more effective than that of MSM
according to the number of iterations of Procedure I. The optimization algorithm of adjusting the computational box may
also affect the number of iterations.

Then, we will give a rough computational complexity analysis. When the mode number increases to N, the number of
Fourier coefficients of SMEP is Nx � O((2N + 1)3). The computational effort to calculate Eqs. (14)–(16)in SMEP is O(NsNxlogNx),
where Ns is the number of chain contour steps. The number of basis functions of MSM, Nm, is determined by the symmetry
and Bravais lattice of a certain space group [22]. The principal relationship between numbers of basis functions of two meth-
ods is shown in Table 6. However, the computational effort of MSM to calculate Eqs. (24)–(26) is OðNsN

2
mÞ. Therefore, when
Table 3
The magnitude of nonzero Fourier coefficients /A;Gmnk

for BCC and gyroid phases obtained by MSM and SMEP. The index of reciprocal vector (mnk) includes
reciprocal vectors within a star of point group symmetry m�3m both for BCC and gyroid phases.

BCC Gyroid

(mnk) MSM SMEP Difference (mnk) MSM SMEP Difference

(000) 0.30000 0.30000 0.00000 (000) 0.40000 0.40000 0.00000
(110) 0.03307 0.03291 0.00016 (211) 0.05373 0.05371 0.00002
(200) 0.00939 0.00932 0.00007 (220) 0.02609 0.02590 0.00019
(211) 0.00225 0.00223 0.00002 (444) 0.00253 0.00248 0.00005
(222) 0.00045 0.00045 0.00000 (611) 0.00203 0.00203 0.00000
(321) 0.00036 0.00036 0.00000 (400) 0.00184 0.00187 0.00003
(310) 0.00036 0.00036 0.00000 (543) 0.00170 0.00166 0.00004
(220) 0.00026 0.00025 0.00001 (440) 0.00142 0.00145 0.00003
(400) 0.00025 0.00023 0.00002 (321) 0.00140 0.00140 0.00000
(330) 0.00018 0.00018 0.00000 (631) 0.00123 0.00122 0.00001
(411) 0.00018 0.00017 0.00001 (541) 0.00120 0.00118 0.00002
. . . . . . . . . . . . . . . . . . . . . . . .

Table 4
Comparison of free energy density and length of edge.

BCC Gyroid

MSM SMEP MSM SMEP

Energy density �0.561042 �0.561619 �0.266687 �0.269220
Length of edge 4.520909 4.516176 8.726663 8.708911



Table 5
The iterations of Procedure I required for various N.

BCC Gyroid

N MSM SMEP N MSM SMEP

1 �� 3
2 23 3 2 2 5
3 3 2 3 51 3
4 1 1 4 9 4

5 �� 3
6 �� 3
7 6 2
8 14 2
9 1 1

‘‘��” means that the iterations is more than 200.

Table 6
The principal relationship between numbers of basis functions of MSM and SMEP.

BCC FCC Gyroid Fddd

Nm Nx/96 Nx/64 Nx/96 Nx/16
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calculating the modified diffusion equation and density operations, for BCC and gyroid phases, the computational complexity
of MSM is larger than that of SMEP when the modes N is greater than 23. The conclusion holds when N is greater than 18 for
FCC phase or 6 for Fddd. However, the final computational complexity is heavily dependent on the iteration method for
updating the field functions and the way to adjust the computational box.

From MSM and SMEP, we can obtain the same ordered structures that belong to the corresponding space group for di-
block copolymer melt. The way to adjust the computational box by SMEP removes the constraints of the size and shape
of computational box, which makes the free energy achieve its minimum value easily and more effective than that of
MSM. In strongly-segregated system, a large number of basis functions are required for capturing the sharp interface
[15]. SMEP can reduce the computational complexity with the FFT technology. SMEP can also relieve the programmers’ bur-
den because all phases can be calculated by the same code, while MSM need different codes for different phases. Meanwhile,
for more complex copolymers, SMEP can be extended to other topological architecture easily.
5. Conclusion

A novel numerical method, which does not need a priori symmetric information and can adjust the period structure auto-
matically, is developed based on SCFT. Here, the method is applied to diblock copolymer system. Ever though the SCFT equa-
tions are nonlinear system and exist the multiple solutions, an efficient method for estimating optimized initial values is
given in the light of symmetrical microstructures of diblock copolymer system. Using the method, we calculated all stable
phases of diblock copolymers discovered in the experiment, FCC, BCC, cylinder, gyroid, lamellar and Fddd phases and also
captured some meta-stable phases. We also compared our method with Matsen–Schick’s method. Numerical examples dem-
onstrate that our method has some advantages over MSM. Our future work is to apply the current method to other block
copolymer systems based on SCFT as well.
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