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Abstract. We describe a recent evolution of Harmonic Analysis to generate analytic tools
for the joint organization of the geometry of subsets of Rn and the analysis of functions
and operators on the subsets. In this analysis we establish a duality between the geometry
of functions and the geometry of the space. The methods are used to automate various
analytic organizations, as well as to enable informative data analysis. These tools extend to
higher order tensors, to combine dynamic analysis of changing structures.

In particular we view these tools as necessary to enable automated empirical modeling,
in which the goal is to model dynamics in nature, ab initio, through observations alone. We
will illustrate recent developments in which physical models can be discovered and modelled
directly from observations, in which the conventional Newtonian differential equations, are
replaced by observed geometric data constraints. This work represents an extended global
collaboration including, recently, A. Averbuch, A. Singer, Y. Kevrekidis, R. Talmon, M.
Gavish, W.Leeb , J. Ankenman , G. Mishne and many more [36, 28, 35, 9, 10].

1. Introduction

We describe developments in Harmonic Analysis on subsets of Rn, methodologies which
integrate geometry, combinatorics, probability and Harmonic analysis, both linear and non-
linear. We view the emerging structures,as providing natural settings to enable data driven
Empirical models for observed dynamics.

Our initial focus is on methods applicable to discrete subsets viewed here as data samples
on a continuous structure, a varifold, an infinite dimensional metric space etc. These samples
could be generated through a discretization of a stochastic differential equation or through
observations of natural or human driven processes .

The challenges of high dimensions, and the need to process massive amounts of seemingly
unstructured clouds of points in Rn (sometimes data) forces us to introduce automated
analytic methodologies to reveal the geometry of natural data, understand natural function
spaces, or operators on such functions.

A basic insight is that the geometry of a subset is intimately connected to the geometry
of functions on its points, (or sometimes operators on functions) not just the coordinate
functions which are linear functions, or exponentials eix·w, with random w or band limited
functions and corresponding prolate functions or, more generally, the eigenvectors of natural
operators such as graph Laplacians on the subset .

We exploit the fact that eigenvectors of the Laplace Beltrami operator on a manifold (or
their discrete approximations), provide, both a high dimensional embedding of the manifold,
and a coordinate system, opening the door to analysis.
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Some of these ideas are well known classically, for Riemannian manifolds, where the
Laplace operator, Dirac operators, pseudo differential operators, enable the passage from
local properties, to global geometric invariants (as in Atiyah-Singer theories). In Harmonic
Analysis, well known theorems, of G. David, S. Semmes and Peter Jones, show the equiva-
lence of the existence of a bi-Lipschitz parameterization of a subset of Rn and the bounded-
ness of the restriction of Calderon Zygmund operators, as well as some geometric multi-scale
Carleson measure type deviation estimates.

The program described here , can be viewed as describing ”unsupervised geometric ma-
chine learning” , and parallels some of the goals and methodologies of Deep Neural nets
(such as variational auto encoders) , and Recurrent Neural nets, where a variety of algo-
rithms strive to build generative models. for data clouds, see an overview by Yann LeCun,
Yoshua Bengio , Geoffrey Hinton [?]. The duality ( or triality) point of view described here
can be seen as complementary, and necessary to provide better understanding of internal
dependence structures.

One of our goals in this paper is to describe the interplay of such analytic tools with the
geometry and combinatorics of data and information. We will provide a range of illustra-
tions and application to the analysis of operators, as well as to the analysis of documents,
questionnaires, and higher dimensional data bases viewed as tensors.

As will become apparent, the data geometry, or document organization point of view, can
illuminate and inspire fundamental questions of geometry, such as duality and Heisenberg
principles in Riemannian geometry, Carnot geometry etc, defining ”dual metric” structures
on the set of eigenvectors of the Laplace operator, (or sub-Laplace operator). Similarly the
abstract organization of data bases, can inspire deep geometric organization of operators,
their decompositions and analysis (following the Calderon Zygmund ‘hard’ Harmonic Anal-
ysis paradigm). In particular the tuning of the geometry to the nature of an operator ,
as well as the 3 tensor geometry that we discuss, could illuminate the variable geometric
structures,which arise in solving nonlinear partial differential equations, defining ”naturally
evolving metric spaces ”.

The following topics are interlaced in this presentation:
(a) Geometries of point clouds, and their graphs.
(b) From local to global, the role of eigenfunctions as integrators.
(c) Diffusion geometries in original coordinates, and organization in “intrinsic coordinates”.
(d) Coupled dual geometries, Matrices of Data and Operators, duality between rows and

columns, tensor product geometries.
(e) Harmonic Analysis, Haar systems, tensor Besov and bi-Hölder functions, Calderon Zyg-

mund decompositions.
(f) Sparse grids and efficient processing of data.
(g) Applications; to Mathematics, organization of operators, the dual geometries of eigen-

vectors,
(h) Application to empirical modeling of natural dynamical systems through observations

alone, defining intrinsic latent variables. Triality or, extensions of duality to 3 tensors
.

2. Geometries of point clouds in Rn

2.1. Illustrative example. Usually when considering a data set, each item or document is
converted into a vector in high dimensional Euclidean space. For example a text document
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could be converted to the vector, whose coordinates are, the list of occurrence frequencies of
words in a lexicon. A particularly illuminating example carrying the complexity of issues we
wish to address is a Corpus of text documents represented as a collection, or list of points
in Rn.

They have to be organized according to their mutual relevance. We can view this list
either as a single cloud of documents or as a database matrix, in which each column is a
document and each row, is the list of probabilities of occurrence of a given word in the
various documents. We view the words as functions on the documents, and the documents
as functions on the words. We will describe an ab initio geometric methodology to jointly
assemble the language and the documents into a ”smooth” coherent structure, in which
documents are organized by context or topic, and vocabulary is organized conceptually by
contextual occurrences. We will later describe an adapted tensor geometry and harmonic
analysis of rows and columns that links concept and context by duality.

The naive approach to use the distance (or similarity) between two documents through
their Euclidean distance or their inner product, is bound to fail, as already in moderate
dimensions most points are far away, or essentially orthogonal. The distances in high di-
mensions are informative only when they are quite small, leading to the “connect the dots”
diffusion geometry.

For this example if the distribution of the vocabulary in two documents are extremely
close, we can infer that they deal with a similar topic. In this case we can link the two
documents and weigh the link by a weight reflecting the probability that the documents
are dealing with the same topic. This construction builds a graph of documents, as well
as a corresponding random walk (or diffusion process) on the graph. The analogy with
Riemannian geometry, in which we have a local metric, which defines a Laplace operator or
a heat diffusion process is quite obvious, and will drive much of the initial discussion.

However; this approach to organize the documents as a cloud of points is by itself faulty as
it does not account directly for the conceptual similarity , and dependencies between words
, or between documents and their content. In order to untangle these relations we view the
collection of documents as a matrix in row columns duality .

The columns are viewed as functions on the rows and the rows as functions on the columns.
We organize the columns into a hierarchy of topics , (a partition tree of subsets.) These topi-
cal groups are then used to organize the vocabulary (rows) into a graph by their co-ocurrence
in various document topics . This enables the organization of the vocabulary into a hierar-
chy of conceptual groups , which themselves can be reused to redefine the affinity between
documents , ( this process can be iterated as long as we gain in efficiency and precision of
the representation) Coupling the construction of the two partition tree Hierarchies – on the
columns and the rows – takes us away from the representation of the dataset as a point
cloud in Euclidean space, towards representation of the dataset as a function on the product
set {rows} × {columns}. This natural document organization is quite abstract and will be
quantified below, in particular it will become clear that the construction generalizes vari-
ous methods of organization in Numerical Analysis ,and Harmonic Analysis, and extends
naturally to higher order tensorial structures .

2.2. Calculus. The first fundamental point is that there is a natural reformulation of the
basic concepts of Differential Calculus (or PDE) in terms of eigenvectors of appropriate lin-
ear transformations that will enable us to go from this local or infinitesimal description to an
integrated global view of a data cloud. More generally it explains the ability to build data
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driven empirical models, without the use of calculus. We start from a simple reformulation
of the fundamental theorem of calculus, which is an observation of Amit Singer. A basic
problem already posed by Cauchy is the following:

Sensor Localization Problem. Assume we know some of the distances
between a set of points in Euclidean space and assume these distances are
known to determine the system, how does one map the points?

Think of the particular example where you know the distances of each city of a country
to a few nearest neighbors: how would one manage to condense that information into a map
of that country? There is a trivial answer: if enough local triangles with known lengths are
given, then we can compute a local map which can be assembled bit by bit like a puzzle:
this can be thought of as an analogue of integration. A more powerful method is obtained
by writing each point pi as the center of mass of its known neighbors, i.e.

pi =
∑
pj∼pi

wijpj where
∑
j

wij = 1.

Observe that these equations are invariant under rigid motion and scaling. This tells us
that the vector of x−coordinates of all points is an eigenvector corresponding to eigenvalue
1 of the matrix W . Similarly, the vector of y−coordinates and the vector all of whose
coordinates are 1 are also in the same space . We thus see easily that the solution to the
sensor localization problem is obtained by finding a basis of this eigenspace and expressing
three points in this basis (using their mutual distances). Similarly, if we are given a set of
points (n, f(n)) ∈ R2 and we know the differences |f(n)− f(n− 1)| and |f(n)− f(n− 2)|,
then we can determine f (which is a simple variant of the fundamental theorem of Calculus).

2.3. Diffusion. We now return to point clouds in Rn. We can define a notion of local
affinity, or similarity between elements of a set of points {p1, . . . , pn} ⊂ Rn via the matrix

Aij =
exp(−|pi − pj|2/ε)∑n
k=1 exp(−|pi − pk|2/ε)

.

This matrix can be interpreted as collecting the transition probabilities of a Markov process.
ε > 0 is a parameter controlling the scale of influence (with small ε making a transition
to very close neighbors likely while ε large allows for medium- and long-range transitions).
Alternatively, it may be preferable to consider a notion of similarity given by

Aij =
exp(−|pi − pj|2/ε)

ωiωj

where the weights ωi, ωj are chosen such that A is Markov matrix in both rows and columns
(see N .Marshall [26]). Later we will correct it, or select a graph structure optimized for
efficient analysis of functions on the data cloud, or to discover intrinsic Riemannian metrics.
It is easy to verify that in the case that the points are uniformly distributed on a smooth
submanifold of Euclidean space ∆ = (I − A)/ε is an approximation (in a weak topology )
of the Laplace-Beltrami operator on the manifold. Moreover, eigenvectors of A approximate
the eigenvectors of the Laplace operator and powers of A correspond to diffusion on the
manifold scaled by ε. See M.Belkin , P.Nyogi , S.Lafon [5, 25, 26].
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Another more generic (non manifold) example consists of data generated through a sto-
chastic Langevin equation, (a stochastic gradient descent differential equation) this kind of
data can be also organized as above, with ∆ = (I − A)/ϵ approximating the corresponding
Fokker Plank operator . [9, 10]

We can diagonalize A and use the eigenvectors of A to define powers of the diffusion

At(pi, pj) =
n∑

k=1

λtkϕk(pi)ϕk(pj).

This one-parameter family of diffusion defines an embedding Φt in Rn as follows:
Φt(pi) =

{
λtkϕk(pi) : 1 ≤ k ≤ n

}
.

We see that this embedding can be computed to any precision by restricting the eigenvector
expansion to the first few eigenvectors (depending on the decay of the eigenvalues (λk)). This
enables a lower-dimensional embedding of the data through what we call the diffusion map.
The eigenvectors can also provide natural local coordinates on the manifold, see P.Jones
,M.Maggioni ,R Schul [?]. In the case of stochastic data the eigenfunctions approximate the
eigenvectors of the Fokker Plank operator, they are supported on the main diffusion trails,
and reveal latent variables. See B. Nadler , Y.Kevrekidis. [29]

The diffusion distance at time t is given, in the bi-stochastic symmetric case as

d2t (p, q) = At(p, p) + At(q, q)− 2At(p, q) = |Φt(p)− Φt(q)|2

Where At represents the t power of A or the diffusion at time t .

3. Harmonic- Analysis of Databases-Matrices, and Tensors .

3.1. Matrix organization in high dimensional Data analysis. Our claim is that when
dealing with a subset of Rn where n is large but the subset locally is of much lower dimension,
exhibiting local correlations, for example if the subset is a subset of a Varifold, or the cloud is
formed by stochastic orbits of dynamical systems, one wishes to understand and encapsulate
the local constraints. Moreover linear functions such as the coordinates are not linear as
functions on the set. In fact any collection of functions can provide us more coordinates. In
particular, band limited functions such as exp(i⟨x, ξ⟩) where |ξ| < C are quite informative
in revealing the geometry . More general plane waves as generated through deep neural nets
can serve similar modeling functions.

As illustrated before on the example of a Corpus of text documents. It becomes productive
to view the points as a matrix of data, or a discretized version of a kernel, both rows and
columns could correspond to real-world variables or entities of enduring interest. The values
of n (dimension) and p (number of points) are often of comparable magnitude, may both be
large, and in an asymptotic analysis,may both be allowed to grow to infinity. The correlation
or codependence structure of both rows and columns is of interest, this has been a main point
of analysis, when viewing the data as a matrix of an operator, such as a Green operator ,or
an eigendecomposition transform, discussed below.

3.2. Matrix organization in numerical analysis. A bottleneck in many numerical anal-
ysis tasks involves the need to store very large matrices, apply them to vectors and compute
functions of the operators they represent. For example the Fast Fourier Transform and the
Fast Multipole Methods are explicitly based on exploiting the known geometrical organiza-
tion of the row set and the column set of the transformation. A corresponding paradigm
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in Harmonic Analysis is the organization of an operator as in Calderon-Zygmund theory, (
Here we derive automatically the C-Z organization directly from the kernel of the operator
or the data matrix).

Consider V. Rokhlin’s Fast Multipole Method algorithm [20], which organizes a matrix
Mi,j = ∥xi − yj∥−1

of electrostatic or gravitational interactions between a known set of sources {xi} ⊂ R3 and
a known set of receivers {yj} ⊂ R3, by exploiting the known geometry of the source set (the
column set, say) and the receiver set (the row set). A similar approach yields fast wavelet
transforms of linear operators [3]. There, too, the known organization of matrix rows and
columns leads to efficient algorithms for storing, applying and computing functions of certain
linear operators. Suppose however that we wish to apply an analog of the Fast Multipole

Figure 1. Geometric unravelling of a scrambled matrix (random labels) of potential in-
teractions (b). Charges are on the spiral, receivers in the plane. Our matrix organization
reveals the two geometries and their internal structures.

method to a given matrix of electrostatic interactions, Mi,j = ∥xi − yj∥−1, where the sets
{xi} and {yj} themselves are unknown. The order in which rows and columns are given is
meaningless, yet the locations {xi} and {yj} remain encoded in M . (Figure 1) In this context,
the theory developed below leads to data agnostic organizational methods which are able,
even for some oscillatory potentials, such as M (xi, yj) =Mi,j = cos(100∥xi−yj∥)∥xi−yj∥−1

to recover the underlying coupled source and receiver “geometric optics”, (in the case of
points sampled on a surface or a curve ), and furthermore leads to orthonormal bases enabling
the implementation of a corresponding fast transform, analogous to [3], the ℓ1 norm of matrix
coefficients in this basis measures the compression rate it is able to achieve: It can be easily
proved that this norm controls the mixed smoothness of the matrix.
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3.3. Setup. Let M be a matrix, we denote its column set by X and its row set by Y . M
can be viewed as a function on the product space, namely

M : X × Y → R

Our first step in processing M , regardless of the particular problem, is to simultaneously
organize X and Y , or in other words, to construct a product geometry on X × Y in which
proximity (in some appropriate metrics) implies predictability of matrix entries. Equiv-
alently, we would like the function M to be “smooth” with respect to the tensor product
geometry in its domain. As we will see, smoothness, compressibility, having low entropy, are
all interlinked in this organization. We start by redefining the classical notions of smoothness
in the context of tree metrics .

3.4. Brief description of Haar Bases. A hierarchical partition tree on a dataset X is an
ordered collection of (finite) disjoint covers of the set where each cover is a refinement of the
preceding cover, Such a structure allows harmonic analysis of real-valued functions on X, as
it induces special orthonormal Haar bases [17]. The elements of the cover will be denoted as
folders or nodes of the tree connecting a folder to the coarser folder containing it.

A Haar basis is obtained from a partition tree as follows. Suppose that a node (subset
or folder) in the tree has n children, that is, that the set described by the node decomposes
into n subsets in the next, more refined, level. Then this node contributes n − 1 functions
to the basis. These functions are all supported on the set described by the node, are piece-
wise constant on its n subsets, all mutually orthogonal, and are orthogonal to the constant
function on the set.

Figure 2. A partition tree on the unit interval starting with a partition into three subin-
tervals,one of which is further devided in two and the other two into three subintervals . The
corresponding Haar functions are orthogonal, measuring the variation of averages among
neighbors, with the color corresponding to their sign .

Observe that just like the classical Haar functions, coefficients of an expansion in a Haar
basis measure variability of the conditional expectations of the function in sub nodes of a
given node.
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Tasks such as compression of functions on the data set, as well as subsampling, denoising
and “learning” such functions, can be performed in Haar coefficient space using methods
familiar from Euclidean harmonic analysis and signal processing [17].

Some results for the classical Haar basis on [0, 1] extend to generalized Haar bases. Recall
that the classical Haar functions based on the dyadic tree are given by

hI(x) =
(
|I|−

1
2

)
(χ− − χ+) ,

where χ− is the indicator of the left half of I and χ+ is the indicator of the right half of I.
The classical Haar basis on [0, 1] is induced by the partition tree of dyadic subintervals

of [0, 1]. This tree defines a natural dyadic distance d(x, y) on [0, 1], defined as the length
of the smallest dyadic interval containing both points. Hölder classes in the metric d are
characterized by the Haar coefficients aI =

∫
f(x)hI(x)dx:

|aI | < c|I|
1
2
+β ⇔ |f(x)− f(x′)| < c · d(x, x′)β .

A natural partition tree on a set of points in Rd , is the vector quantization tree i,e a
hierarchical organization into disjoint covers by subsets (folders) of approximate diameter
(1/2)n. We define a hierarchical tree distance between two points as being the diameter of
the smallest folder containing both points .

The characterization of smoothness property holds for any Haar basis when d is the tree
metric induced by the partition tree, and |I| = #I

#X
is the normalized size of the subset

(folder) I. (We remark also that for β < 1 the usual Holder condition is equivalent to dyadic
Holder for all shifted dyadic trees.)

We note that there are multiple ways to build partition trees (and corresponding smooth-
ness spaces). The different construction methods can be divided into two classes: bottom-up
construction and top-down construction. Broadly, a bottom-up construction begins with the
definition of the lower levels, initially by grouping the leaves/samples, e.g., using k-means in
the diffusion embedding . Then, these groups are further grouped in an iterative procedure
to create the next levels, ending at the root, in which all the samples are placed under a
single folder.

A top-down construction is typically implemented by an iterative clustering method, ini-
tially applied to the entire set of samples, then refined over the course of the iterations,
starting with the root of the tree and ending at the leaves.

A simple blend is achieved by using the first few diffusion eigenvectors, to split the data into
two groups using the first non-trivial eigenvector (approximate max-cut ) then repeating on
each subgroup using its own first non-trivial eigenvector, since the eigenvector computation
is a bottom up iteration, this results in a binary tree, which is often well tuned to the internal
data structures.

3.5. Matrix organization through coupled partition trees. To illustrate the basic
concept underlying the simultaneous row-column organization, consider the case of a vector
(namely, a matrix with one row). In this case, the only reasonable organization would be to
bin the entries in decreasing order , (or in binary quantization tree ). This decreasing function
is obviously smooth outside a small exceptional set (being of bounded variation). Our
approach extends this simple construction – which can be viewed as just a one-dimensional
quantization tree – to a coupled quantization tree.
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We now digress briefly to indicate a simple mathematical framework for joint row/column
organization and analysis of a matrix.( quantization bi-trees) which renders an arbitrary
matrix into a bi-Holder matrix, ( extending the one row example). We start a hierarchical
vector quantization tree on the set of columns, X,(as vectors in Euclidean space) with tree
metric ρX .

The tree metric ρX is such that the rows are ( tautologically) Lipschitz smooth in the
tree metric, as functions of the columns. This implies that the Haar coefficients of the
rows, relative to the tree on the columns, scale with the diameter. A similar hierarchical
organization on the rescaled Haar coefficients of Y (the rows) as a function of the variable
x, induces a similar tree metric ρY on the rows with a similar smoothness property of the
columns.

As we will see this implies that the full matrix is a bi-Lipschitz function i.e. it satisfies a
Mixed Lipschitz Hölder condition

|M (x0, y0)−M (x0, y1)−M (x1, y0) +M (x1, y1)| ≤ C · ρX (x0, x1)
α · ρY (y0, y1)

α

This condition enables the estimation of one value in terms of three neighbors with a higher
order error in the two metrics. (For the square in two dimensions, this would be a relaxation
of the bounded mixed derivative condition

∣∣∣ ∂2M
∂x∂y

∣∣∣ ≤ C, which has been studied in the context
of approximation in high dimensions [33] [18] [7] [?]

This simple organization is not very effective in high dimension, as most points are far
away from each other, leading us to explore various constructions of more intrinsic data
driven metrics and trees, such as the diffusion metrics described above, or the corresponding
“earth mover” metrics . One of our goals is to achieve higher efficiency in representing the
matrix, and develop a Harmonic Analysis, or signal processing of functions on X × Y . In
particular we will see this as an automatic process to build a multiscale Harmonic Analysis
of an operator, or Matrix.

We describe briefly elementary analysis of the Mixed Hölder function classes (as well as
their Besov space duals) on an abstract product set equipped with a partition tree pair.
A useful tool is an orthogonal transform for the space of matrices (functions on X × Y ),
naturally induced by the pair of partition trees (or the tensor product of the corresponding
martingale difference transforms). Specifically, we take the tensor product of the Haar bases
induced on X and on Y by their respective partition trees,

The Mixed-Hölder arises naturally in several different ways. First, as seen above for vector
quantization trees, any matrix can be given Mixed Hölder structure. Second,it can be shown
that any bounded matrix decomposes into a sum of a Mixed Hölder part and a part with
small support ( as for the one row example). ( of course the constants are pretty bad for
random data in high dimensions)
3.6. Coupled partition trees, optimized duality. Our goal is to build coupled partition
trees to optimize compression of the original function (Matrix) expanded in the tensor Haar
basis, say by minimizing an l1 norm of the tensor Haar coefficients. Such a task requires
the discovery of both systems of Haar functions, it is clear that a unique minimizer does not
exist in general . Moreover, the appropriate structure is a function of context and precision,
as will become clear for various examples, in mathematics and beyond.

We now consider a matrix M and assume two partition trees – one on the column set of
M and one on the row set of M – have already been constructed. Each tree induces a Haar
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basis and a tree metric as above. The tensor product of the Haar bases is an orthonormal
basis for the space of matrices of the same dimensions as M . We review some analysis of M
in this basis.

Denote by |R| = |I × J | a “rectangle” of entries of M , where I is a folder in the column
tree and J is a folder in the row tree. Denote by |R| = |I||J | the volume of the “rectangle”
R. Indexing Haar functions by their support folders, we write hI(x) for a Haar function on
the rows. This allows us to index basis functions in the tensor product basis by rectangles
and write hR(x, y) = hI(x)hJ(y).

Analysis and synthesis of the matrix M is in the tensor orthonormal Haar basis is simply

aR =

∫
M(x, y)hR(x, y)dxdy

M(x, y) =
∑
R

aRhR(x, y) .

The characterization of Hölder functions mentioned above extends to mixed-Hölder ma-
trices [12, 18]:

∣∣∣aR∣∣∣ < c
∣∣∣R∣∣∣1/2+β

⇔
∣∣∣M(x, y)−M(x′, y)−M(x, y′) +M(x′, y′)

∣∣∣ ≤ cρX(x, x
′)βρY (y, y

′)β

where ρX and ρY are the tree metrics induced by the partition trees on the rows and
columns, respectively. Observe that his condition implies the conventional two dimensional
Holder condition ∣∣∣M(x, y)−M(x′, y′)

∣∣∣ ≤ ρX(x, x
′)β + ρY (y, y

′)β

Simplicity or sparsity of an expansion is quantified by an “entropy” such as

eα(M) =
(∑∣∣aR∣∣α)1/α

for some α < 2. We comment that this norm is just a tensor Besov norm that is easily seen to
generalize Earth mover distances when scaled correctly, adding flexibility to our construction
below. This norm can be generalized to the following family of Besov norms

eα,β(M) =
(∑∣∣R|β|aR∣∣α)1/α

for some α, β. Useful relations between this “entropy”, efficiency of the representation in
tensor Haar basis and the mixed-Hölder condition, is given by the following two propositions
valid for ”balanced trees” [12, 18].

Proposition. Assume eα(M) =
(∑ ∣∣aR∣∣α) ≤ 1. Then the number of coefficients needed to

approximate the expansion to precision ε1−α/2 does not exceed ε−α log(ε−1) and we need only
consider large coefficients corresponding to Haar functions whose support is large. Specifi-
cally, we have ∫ ∣∣∣M −

∑
|R|>ε, |aR|>ε

aRhR(x)
∣∣∣αdx < ε1−α/2
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�
The next proposition shows that eα(M) estimates the rate at which M can be approxi-

mated by Hölder functions outside sets of small measure.

Proposition. Let f be such that eα ≤ 1. Then there is a decreasing sequence of sets Eℓ

such that |Eℓ| ≤ 2−ℓ and decompositions of Calderon Zygmund type f = gℓ + bℓ. Here, bℓ is
supported on Eℓ and gℓ is bi-Hölder β = 1/α − 1/2 with constant 2(ℓ+1)/α. Equivalently, gℓ
has Haar coefficients satisfying |aR| ≤ 2(ℓ+1)/α|R|1/α.

Thus we can decompose any matrix into a “good”, or mixed-Hölder part, and a “bad”
part with small support.

Mixed-Hölder matrices indeed deserve to be called “good” matrices, as they can be sub-
stantially sub-sampled. To see this, note that the number of samples needed to recover the
functions to a given precision is of the order of the number of tensor Haar coefficients needed
for that precision. For balanced partition trees, this is approximately the number of bi-folders
R, whose area exceeds the precision ε. This number is of the order of (1/ε)α log (1/ε).

These remarks imply that the entropy condition quantifies the compatibility between the
pair of partition trees (on the rows and on the columns) and the matrix on which they are
constructed. In other words, to construct useful trees we should seek to minimize the entropy
in the induced tensor Haar basis.

For a given matrix M , finding a partition tree pair, which is a global minimum of the
entropy, is computationally intractable and not sensible, as the matrix could be the super-
position of different structures, corresponding to conflicting organizations. At best we should
attempt to peel off organized structured layers.

The iterative procedures for building tree pairs described previously for the text docu-
ments example, perform well in practice. These procedures alternate between construction
of partition trees on rows and on columns . Each tree defines a Besov norms its dual ( i,e
functions on its nodes) which is used to reorganize the dual into a tree leading to a new tree
on the original nodes .

A nice example in mathematics, is to view the matrix of eigenvectors of the Laplace
operator on a compact Riemannian manifold as a data base, in which the columns are the
points on the manifold and the rows are the values at the point of different eigenvectors .

We can organize the Riemannian geometry in a multiscale geometry, The construction
described before builds Besov norms on functions on the manifold, which can be used to
measure a distance between eigenvectors ( the L2 distance is useless being =

√
2),thereby

inducing a distance on the “Fourier dual” of Laplace eigenvectors. Of course different ge-
ometries on the space, will give rise to different dual geometries.

To conclude, we see emerging an analysis or “Signal processing toolbobox” for digital data
as a first step to analyse the geometry of large data sets in high-dimensional space and
analyse functions defined on such data sets. The ideas described above are strongly related
to nonlinear principal component analysis, kernel methods, spectral graph embedding, and
many more, at the intersection of several branches of mathematics, computer science and en-
gineering. They are documented in literally hundreds of papers in various communities. For
a basic introduction to many of these ideas and more,as they relate to diffusion geometries.
We refer the interested reader to the July 2006 special issue of Applied and Computational
Harmonic Analysis, and references therein [13].
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4. Empirical dynamics, or higher dimensional tensors.

The purpose of this section is to show that a corresponding generalization of the analysis
to 3-tensors by triality enables the organization of dynamical systems as well as purely
empirical modeling of natural dynamics . A particular implementation of these algorithms
will allow a systematic realization of all these steps – inferring ”natural geometries” from
data, using just the data organization counterpart of the above discussion: similarity between
nearby observations/measurements.

Recovering the underlying structure of nonlinear dynamical systems from data (“system
identification”) has attracted significant research efforts over many years, and several in-
genious techniques have been proposed to address different aspects of this problem. These
include methods to find nonlinear differential equations to discover governing equations from
time-series or video sequences equation-free modeling approaches, and methods for empirical
dynamic modeling . We present methods extending our prior discussion building upon the
work of Y. Kevrekides and I.Mezic, [22, 27]. Our goal is the organization of observations
originating from many different types of dynamical systems into a joint coherent structure,
which should parametrize the various dynamical regimes and build empirical models of the
whole observation space. Since we are comparing dynamical observations, which are dis-
torted versions of each other, we are forced to discover variants of the EMD[1], which go
beyond classical transforms in enabling data-driven comparisons between trajectories and
their dynamics, see J.Ankenman, W. Leeb [4, ?]

4.1. Problem Formulation and Toy Examples. In our data agnostic setting, we think
of time-dependent measurements which are the result of a number of experiments that we
will call trials; during each trial, the (unknown ”state”) parameter values remain constant.

In this black box setting, the dynamical system is unknown, nonlinear and autonomous,
and is given by

dx

dt
= f(x;p)(1)

y = h(x)(2)
We do not have access to its state x nor to its parameter values p; we also do not know the
evolution law f , nor the measurement function h. We only have measurements (observations)
y labelled by time t.

The black box is endowed with “knobs” that, in an unknown way, change the values of the
parameters p; so in every trial, for a new, but unknown, set of parameter values p, we can
observe y coming out of the box without knowing x or f or even h. We want to characterize
the system dynamics by systematically organizing our observations (collected over several
trials) of its outputs.

More specifically, we want to (a) organize the observations by finding a set of state variables
and a set of system parameters that jointly preserve the essential features of the dynamics;
and then (b) find the corresponding intrinsic geometry of this combined variable-parameter
space, thus building a sort of normal form for the problem. Small changes in this jointly
intrinsic space will correspond to small changes in dynamic behavior (i.e. to robustness).
Having discovered a useful “joint geometry” we can then inspect its individual constituents.
Inspecting, for example, the geometry of the discovered parameter space, will help identify
regimes of different qualitative behavior. This might be different dynamic behavior, like hys-
teresis, or oscillations, separated by bifurcations; alternatively, we might observe transitions
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between different sizes of the minimal realizations: regimes where the number of minimal
variables/parameters necessary in the realization changes.

We can also inspect the identified state variable geometry, which will help us organize
the temporal measurements in coherent phase portraits. In addition, if there exist regimes
where the system becomes singularly perturbed, we expect we will be able to realize that the
requisite minimal phase portrait dimension changes (reduces), and that the reduction in the
number of state variables is linked with the reduction in the number of intrinsic parameters.

As an illustrative example, consider the following dynamical system, arising in the unfold-
ing of the Bogdanov-Takens bifurcation[21]:

dx1
dt

= x2

dx2
dt

= β1 + β2x1 + x21 − x1x2.(3)

This set of differential equations defines a dynamical system with two parameters p =
(β1, β2), two state variables x = (x1, x2), and two observables y = (y1, y2); at first we choose
the observable to be the state variables themselves, i.e., (y1, y2) = (x1, x2) with h(x) being
the identity function. It is known that the parameter space of this system (β1, β2) can be
divided into 4 different regimes separated by one-parameter bifurcation curves [21]. Figure
1. shows this “ground truth” bifurcation diagram for our simulated 2D grid of parameter
values. Each point p = (β1, β2) on the grid is colored according to its respective dynamical
regime.

Our goal in this case would be to discover an accurate bifurcation map of the system in a
data-driven manner purely from observations. These observations consist of several samples,
where each sample is a single trajectory y(t) of the system initialized with unknown (possibly
different) parameter values and initial values. In addition, we would like to deduce from these
large number of realizations of trajectories y(t) arbitrarily and differently initialized that the
system depends on only two parameters and can be realized with only two state variables;
and to reconstruct the bifurcation diagram with its phase portraits.

4.2. Learning dynamic structures and latent variables from observations. Consider
data arising from an autonomous dynamical system; we view the observations as entries in
a three-dimensional tensor. One axis of the tensor corresponds to variations in the problem
parameters, one to variations in the problem variables, and the third axis corresponds to
time evolution along trajectories.

Formally, let P denote an ensemble of Np sets of the dp system parameters. Let V be a
ensemble of Nv sets of initial condition values of the dv state variables. For each p ∈ P and
v ∈ V , we observe a trajectory Y (v,p, t) of length Nt in Rdv of the system variables, where
t = 1, . . . , Nt denotes the time sample. In summary, p is a label of the particular differential
equations of the dynamical system, v is a label of the observations trajectory, and t is the
time label.

Let Y denote the entire 3D tensor of observations of dimension Np ×Nv ×Nt consisting
of all the data at hand. With respect to the black box setting described in the introduction,
we emphasize that the identity of the parameters and variables is hidden; we only have
trajectories of observations corresponding to various trials with possibly different hidden
parameter values and with different hidden initial input coordinates.
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Figure 3. (up) The Bogdanov-Takens bifurcation maps with insets illustrating the typical
phase-portraits in each dynamical regime. (left) The Bogdanov-Takens bifurcation map.
(right) An example of the phase-portrait of the simulated trajectories of the Bogdanov-
Takens system corresponding to the parameter set (β1, β2) = (−0.1,−0.2), marked by red
’x’ on the left.

To make the problem definition concrete we describe the setting of a specific example.
Recall the Bogdanov-Takens dynamical system of two variables and two parameters, intro-
duced in (3). We generate a set P of Np = 400 different parameter values p = (β1, β2) from
a regular fixed 2D grid, where β1 ∈ [−0.2, 0.2] and β2 ∈ [−1, 1], and additional 10 parameter
values located exactly on the bifurcation. Similarly, we generate a set V of Nv = 441 differ-
ent initial conditions v = (y1(0), y2(0)) from a fixed 2D grid in [−1, 1]2. For each p ∈ P and
v ∈ V , we observe a trajectory of the system for Nt = 200 time steps, where the interval
between two adjacent time samples is ∆t = 0.004 [sec] and collect all the trajectories into
a single 3D tensor Y. In this example, Np = 410, Nv = 441 and Nt = 200 so overall we
have Y ∈ R410×441×200. For illustration purposes, Figure 3. (right) depicts β1 = −0.1 and
β2 = −0.2 (marked by a red ‘×’ in Figure 3 (left)).
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Figure 4. (left) Data-driven embedding of the parameters axis of the observations collected
from the Bogdanov-Takens system (colored according to the true bifurcation map). Embed-
dings built from (a) state variable observations; and (b) observations through a nonlinear
invertible function. (right) Data-driven embedding of the state variables axis (c) colored by
the initial conditions of x1, and (d) by the initial conditions of x2.

We note that the trajectories (as illustrated in Figure 3) are long enough to partially over-
lap in phase space. Such an overlap induces the coupling between the time and variables axes,
which is captured and exploited by our analysis. We wish to find a reliable representation
of the hidden parameters, of the hidden variables, and of the time axis.

Define yp = {Y (v,p, t)|∀v,∀t} for each of the Np vectors of hidden parameter values
p in P , namely, a data sample consisting of all the trajectories from a single trial. For
simplicity of notation, we will use subscripts to denote both the appropriate axis and a
specific set of entries values on the axis. We refer to {yp},p ∈ P as the data samples from
the parameters axis viewpoint. In the Bogdanov-Takens example, Figure 3 depicts yp for
p = (β1, β2) = (−0.1,−0.2).

Similarly, let yv and yt be the samples from the viewpoints of the variables axis and the
time axis, respectively, which are defined by

yv = {Y (v,p, t)|∀p,∀t} , v ∈ V
yt = {Y (v,p, t)|∀v,∀p} , t = 1, . . . , Nt.

One way to accomplish our goal is to process the data three successive times, each time from
a different viewpoint.
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Here, we use a data-driven parametrization approach based on a kernel. From the trials
(effectively, parameters) axis point of view, a typical kernel is defined by

(4) k(yp1 ,yp2) = e−∥yp1
−yp2

∥2/ϵ,∀p1,p2 ∈ P
based on distances between any pair of samples, where the Gaussian function induces a sense
of locality relative to the kernel scale ϵ. To aggregate the pairwise affinities comprising the
kernel into a global parametrization, traditionally, the eigenvalue decomposition (EVD) is
applied to the kernel, and the eigenvalues and eigenvectors are used to construct the desired
parametrization. The specific initial parametrization method that is used here is diffusion
maps [?],

From three separate diffusion maps applications to the sets {yp}, {yv}, and {yt}, we can
obtain three mappings as in (??), denoting the associated eigenvectors by {ψP

ℓ }, {ψV
ℓ }, and

{ψT
ℓ }, respectively.

However, such mappings do not take into account the strong correlations and co-dependencies
between the parameter values and the dynamics of the variables which arise in typical dynam-
ical systems. For example, in the Bogdanov-Takens system, the dynamical regime changes
significantly depending on the values of the parameters.

To incorporate such co-dependencies, we extend the mutual metric learning algorithm
described for matrices in order to build flexible EMD like distances on each axes of this 3
tensor . In the introduction of the affinity matrix in (4), we deliberately did not specify
the norm used to compare between two samples. Common practice is to use the Euclidean
norm. However, as pointed out by Lafon [25] anisotropic diffusion maps can be computed by
using different norms. This issue has been extensively studied recently, and several norms
and metrics have been developed for this purpose by Y. Kevrekidis , and Gal Mishne[28]

[16].
Here, following Gal Mishne [28],we describe the 3- tensor extension of the preceding met-

ric learning construction for matrix organization where the different axis geometries evolve
together.

4.3. Tensor Metric Construction, or “informed metrics”.

Partition Trees, and 3 tensor Besov spaces. The construction described previously for
matrices, is easily extended to higher dimensional tensors, the only constraint is to define
appropriate metrics on each coordinate axis, in the three tensor case a coordinate label defines
a sub matrix, we match two labels 1 and 2 through the tensor Besov distance between them,

dα,β(M1 −M2) =
(∑∣∣R|β|a1R − a2R

∣∣α)1/α

for some α, β. ) Observe that the Besov distance for β > 0, can be computed without
using the Haar functions, simply by replacing the Haar coefficient on the submatrix R by
the average on R . see W. Leeb and J. Ankenman[?, 4] We build a partition tree for each
axis based on this tensor product metric. Observe that this is a flexible metric generalizing
earth mover to the context of matrices, where rows and columns have different smoothness
geometries , it is not a conventional transportation metric.

4.4. Iterative Metric Construction. The construction of the partition tree described
above relies on a learning a metric between the samples on the different axis coordinates
(sample labels), in which the construction of the tree relies on an iteratively evolving “ metric”
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induced by partition trees on the coordinates of the samples. Namely, the construction of Tv

relies on a metric between the samples yv which are matrices in the p,t labels, i.e., it uses
the 2 tensor Besov distance or EMD .and the construction of Tt relies on a metric between
the samples v,p Given Tv and Tt, the informed metric between the samples yp is constructed,
and then, used to build a new partition tree Tp of the samples yp. In the second substep
within the iteration, Tp can be used to construct refined metrics between yv and between yt.

Once the metric is constructed, it can be used to build a partition tree Tp on the samples
yp.

The construction of the informed metric between the samples yp described above is re-
peated in an analogous manner to build informed metrics between the samples yv and be-
tween the samples yt. Proving convergence for this “iterative, self-consistent re-normalization”
of the coordinates, is the subject of current research.

We note that the particular choice of the specific Besov norm is explained in detail in W.
Leeb [?] yet other L2 type norms can be used depending on the application at hand.

First, the recursive procedure described above repeats in iterative manner, where in each
iteration, three informed metrics are constructed one by one, based on the metrics from the
preceding iteration. As the iterations progress, the metrics are gradually refined, and the
dependency on the initialization is reduced.

Our method is applied to the 3D tensor of trajectories Y collected from the Bogdanov-
Takens system. As described above, Y consists of (short) trajectories of observations arising
from the system initialized with various initial conditions and with various parameters. We
emphasize that the knowledge of the different regimes and the bifurcation map were not
taken into account in the analysis; only the time-dependent data Y were considered.

Figure ?? (a) depicts the scatter plot of the two dominant eigenvectors representing the
parameters axis. It consists of Np points (the length of the eigenvectors), where each point
corresponds to a single sample yp ∈ RNv×Nt , which is associated with parameters values
p = (β1, β2) on the 2D grid depicted in Figure 3. Moreover, each point in Figure 1 is colored
by the same color-coding used in Figure 2. We observe that our method discovers an empirical
bifurcation mapping of the system. Indeed, the obtained representation of the parameters
through the eigenvectors establishes a new coordinate system with a geometry, built solely
from observations, which reflects the organization of the parameters space according to the
true underlying bifurcation map – the “visual homeomorphism” (stopping short of claiming
visual isometry) is clear.

To illustrate the generality of our method, we now apply a nonlinear (yet invertible)
observation function

z(t) = h(x(t))

with hk(x(t)) =
√
aT
kx(t) + αk, k = 1, 2, where ak is a random observation vector and

αk is a constant set to guarantee positivity. Figure 4 (b) depicts the scatter plot of the
two dominant eigenvectors representing the parameters axis obtained from the new set of
nonlinear observations. An equivalent organization is clearly achieved.

Figure 4 (c) depicts the scatter plot of the two dominant eigenvectors representing the state
variable axis. The plot consists of Nv points (the length of the eigenvectors), where each
point corresponds to a single sample yv ∈ RNp×Nt , which is associated with a particular set
of initial condition values v = (y1(0), y2(0)). The embedded points are colored in Figure 4 (c)
by the initial conditions of the variable y1, and in Figure 4 (d) by the initial conditions of
the variable y2. The color-coding implies that the recovered 2D space corresponds to the 2D
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space of the true variables of the system. In other words, the high dimensional samples yv

are embedded in a 2D space, which recovers a 2D structure accurately representing the true
directions of the hidden, minimal, two state variables of the system.

4.5. Two Coupled Pendula. To demonstrate the ability to extract true physical param-
eters we simulate a system of two simple coupled pendula with equal lengths L and equal
masses m, connected by a spring with variable constant k(t), (corresponding to variable
dynamics that we need recover)

To highlight the broad scope of our approach from a data analysis perspective, we assume
that we do not have direct access to the horizontal displacement. Instead, we generate movies
of the motion of the coupled pendula ) . We now apply a fixed, invertible, random projection
to each frame of the movie. In other words, each frame of the movie was multiplied by a fixed
matrix, whose columns were independently sampled from a multivariate normal distribution
and normalized to have a unit norm. The resulting movie with the projected frames can be
found in the following link: youtube.com/watch?v=xz0hzQTyPGo.

Figure 5. An example of a snapshot of the coupled pendulum system paired with its
random projection counterpart.

Figure 6. The Fourier spectrogram of the principal eigenvector representing the time axis.
These results are based on the random projections of the movies frames with the same time-
varying spring constant. The two frequencies ω1 and ω2(t) are overlayed on the spectrogram.
The dashed red line corresponds to the fixed oscillation frequency ω1 and the dotted yellow
line corresponds to the time-varying oscillation frequency ω2.

https://www.youtube.com/watch?v=xz0hzQTyPGo
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The pendulum model above was designed as an analogy to calcium fluorescence measuring
neuronal activity in the motor cortex of a mouse repeating a task on multipls trials , the
fluctuating pixels of the pendulum codes led us to latent variable which are the time variable
normal modes. Identical processing on neuronal fluctuations should reveal internal latent
controls

The setting in the figure below is identical to the one described above,see Figure 7, but
we don’t assume any equations and follow G.Mishne [28] in which the project is described

Figure 7. This figure illustrates the setting of our tri-geometry analysis of the collected
trial-based neuronal activity from the motor cortical region. These measurements were taken
from a behaving mouse in a single day of experiments. The data is composed of 60 trials.
A single trial consists of 12 seconds acquired at 10Hz. The recordings are taken from 121
neurons located in M1 cortex. The entire data set of neuronal activity is therefore viewed
as a 3-dimensional tensor(left), measuring a (121-dimensional) vector of neuronal activity at
each time frame within each trial, and the neuronal activity is represented by the intensity
level of the image (blue – no activity, red – high activity) The three trees in triality are
plotted and a sub box in yellow corresponds to a group of neurons coactivity on a group of
trials , at a fixed period . The data is visualized on the right as 2D slices of temporal neural
images, with a clean neural map extracted in green , and the neuron graph above .

5. Learning Empirical Intrinsic Geometry, EIG.

In the preceding sections we have glossed over the basic problem of initializing the geomet-
ric affinity, we ignored the dependence of the eigenvectors on the coordinate system. We now
describe with more detail, a simpler setup where empirical analysis reveals the underlying
intrinsic latent geometric coordinates on which data is measured.

Our basic assumption is, that we are observing a stochastic time series governed by a
Langevin equation on a Riemannian manifold, these observations are transformed through
a nonlinear transformation into high dimensions in an ambient unknown independent noisy
environment. Our goal is to show that we can recover the original Riemannian manifold
as well as the potential, driving the dynamics of the observations. Moreover by building a
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geometry capturing the normalized variabilities of local statistical histograms, we eliminate
the effect of external noise interferences.

As an example consider a molecule (Alanine Dipeptide) consisting of 10 atoms and os-
cillating stochasticallly in water. It is known that the configuration at any given time is
essentially described by two angle parameters. We assume that we observe five atoms of the
molecule for a certain period of time, and five other atoms in the remainder time. The task
is to describe the position of all atoms at all times, or more precisely, discover the angle pa-
rameters and their relation to the position of all atoms. See Figure 8.The main point is that
the observations are quite different, perhaps using completely different sensors in different
environments ( but same dynamic phenomenon) and that we derive an identical intrinsic
“natural” manifold parameterizing the observations.
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Figure 8. (a) A representative molecular structure of Alanine Dipeptide, excluding the
hydrogens. The atoms are numbered and the two dihedral angles ϕ and ψ are indicated.
(b)-(c): A 2-dimensional scatter plot of random trajectories of the dihedral angles ϕ and
ψ. Based on observations of the corresponding random trajectories of merely five out of ten
atoms of the molecule, we infer a model describing one of the angles. The points are colored
according to the values of the inferred model from the five even atoms (b) and the five odd
atoms (c). We observe that the gradient of the color is parallel to the x-axis, indicating
an adequate representation of one of the angles. In addition, the color patterns are similar,
indicating that the models are independent of the particular atoms observed, and describe
the common intrinsic parameterization of the molecule dynamics.
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An important remark is that we observe stochastic data constrained to lie on an unknown
Riemannian manifold, that we need somehow to reconstruct explicitly, not having any co-
ordinate system on the manifold . This is achieved through the explicit construction of the
eigenvectors of an intrisic Laplace operator on the manifold (observations), these can be used
to obtain a low dimensional canonical embeddings independent of observation modality, and
obtain local charts on the manifold. This invariant description of the dynamics, is similar to
the reformulation of Newton’s law through invariant Hamiltonian equations see Talmon [?].

Broad outline.
To achieve this task and learn an intrisic Riemannian manifold structure,
we assume that we observe stochastic clouds of points corresponding to some
unknown standard brownian ensemble ( as in the example of the Alanine
molecule for short time intervals). More specifically this process has three
scales:

The first identifies ”local micro clouds” and converts them to statistical
histograms .

The second relates clouds of histograms to each other using the affine in-
variant Mahalanobis metric between histograms,this metric is immune to the
distortion due to independent noise.

The third builds the whole Riemanniann manifold by integrating the local
metrics

.
This provides an intrinsic Riemannian manifold that is both insensitive to

noise and, invariant to changes of variables.
(This construction is a data driven version of information geometry see [?])

5.1. detailed description. Specifically and for simplicity of exposition, we consider a flat
manifold for which we adopt the state-space formalism to provide a generic problem formu-
lation that may be adapted to a wide variety of applications.

Let θt be a d-dimensional underlying coordinates of a process in time index t. The dynam-
ics of the process are described by normalized stochastic differential equations as follows1

(5) dθit = ai(θit)dt+ dwi
t, i = 1, . . . , d,

where ai are unknown drift functions and ẇi
t are independent white noises. For simplicity, we

consider here normalized processes with unit variance noises. Since ai are any drift functions,
we may first apply normalization without effecting the following derivation. See A. Singer
,R.Talmon[32, ?] for details. We note that the underlying process is equivalent to the system
state in the classical terminology of the state-space approach.

Let yt denote an n-dimensional observation process in time index t, drawn from a probabil-
ity density function (pdf) f(y;θ). The statistics of the observation process are time-varying
and depend on the underlying process θt. We consider a model in which the clean obser-
vation process is accessible only via a noisy n-dimensional measurement process zt, given
by

(6) zt = g(yt,vt)

1xi denotes access to the ith coordinate of a point x.
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where g is an unknown (possibly nonlinear) measurement function and vt is a corrupting
n-dimensional measurement noise, drawn from an unknown stationary pdf q(v) and inde-
pendent of yt.

The description of θt constitutes a parametric manifold that controls the accessible mea-
surements at-hand. Our goal is to reveal the underlying process θt and its dynamics based
on a sequence of measurements {zt}.

Let p(z;θ) denote the pdf of the measured process zt controlled by θt, it satisfies the
following property.

Lemma 1. The pdf of the measured process zt is a linear transformation of the pdf of the
clean observation component yt.

The proof is obvious, relying on the independence of yt and vt, the pdf of the measured
process is given by

(7) p(z;θ) =

∫
g(y,v)=z

f(y;θ)q(v)dydv.

We note that in the common case of additive measurement noise, i.e., g(y,v) = y + v,
only a single solution v(z) = z− y exists. Thus, p(z;θ) in (7) becomes a linear convolution

p(z;θ) =

∫
y

f(y;θ)q(z− y)dy = f(z;θ) ∗ q(z).

The dynamics of the underlying process are conveyed by the time-varying pdf of the
measured process. Thus, this pdf may be very useful in revealing the desired underlying
process and its dynamics. Unfortunately, the pdf is unknown since the underlying process
and the dynamical and measurement models are unknown. Assume we have access to a class
of estimators of the pdf over discrete bins which can be viewed as linear transformations.
Let ht be such an estimator with m bins which is viewed as an m-dimensional process and
is given by

(8) p(z;θt)
T7→ ht,

where T is a linear transformation of the density p(z;θ) from the infinite sample space of z
into a finite interval space of dimension m. By Lemma 1 and by definition (8) we get the
following results.

The process ht is a linear transformation of the pdf of the clean observation component
yt.

The process ht can be described as a deterministic nonlinear map of the underlying process
θt.

We can use histograms as estimates of the pdf, and we assume that a sequence of mea-
surements is available. Accordingly, let ht be the empirical local histogram of the measured
process zt in a short-time window of length L1 at time t. Let Z be the sample space of zt
and let Z =

∪m
j=1 Hj be a finite partition of Z into m disjoint histogram bins. Thus, the

value of each histogram bin is given by

(9) hjt =
1

|Hj|
1

L1

t∑
s=t−L1+1

1Hj
(zs),
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where 1Hj
(zt) is the indicator function of the bin Hj and |Hj| is its cardinality. By assuming

(unrealistically) that infinite number of samples are available and that their density in each
histogram bin is uniform, (9) can be expressed as

(10) hjt =
1

|Hj|

∫
z∈Hj

p(z;θ)dz.

Thus, ideally the histograms are linear transformations of the pdf. In addition, if we shrink
the bins of the histograms as we get more and more data, the histograms converge to the
pdf

(11) ht
L1→∞−−−−→
|Hj |→0

p(z;θ).

In practice, since the computation of high-dimensional histograms is challenging, we prepro-
cess high-dimensional data by applying random filters in order to reduce the dimensionality
without corrupting the information.

5.2. Mahalanobis Distance. We view ht (the linear transformation of the local densities,
e.g. the local histograms) as feature vectors for each measurement zt. The process ht satisfies
the dynamics given by Itô’s lemma

hjt =
d∑

i=1

(
1

2

∂2hj

∂θi∂θi
+ ai

∂hj

∂θi

)
dt(12)

+
d∑

i=1

∂hj

∂θi
dwi

t, j = 1, . . . ,m.

For simplicity of notation, we omit the time index t from the partial derivatives. According
to (12), the (j, k)th element of the m×m covariance matrix Ct of ht is given by

(13) Cjk
t = Cov(hjt , hkt ) =

d∑
i=1

∂hj

∂θi
∂hk

∂θi
, j, k = 1, . . . ,m.

In matrix form, (13) can be rewritten as
(14) Ct = JtJ

T
t

where Jt is the m× d Jacobian matrix, whose (j, i)th element is defined by

J ji
t =

∂hj

∂θi
, j = 1, . . . ,m, i = 1, . . . , d.

Thus, the covariance matrix Ct is a semi-definite positive matrix of rank d.
We define a nonsymmetric C-dependent squared distance between pairs of measurements

as
(15) a2C(zt, zs) = (ht − hs)

TC−1
s (ht − hs)

and a corresponding symmetric distance as
(16) d2C(zt, zs) = 2(ht − hs)

T (Ct +Cs)
−1 (ht − hs).

Since usually the dimension d of the underlying process is smaller than the number of his-
togram bins m, the covariance matrix is singular and non-invertible. Thus, in practice we
use the pseudo-inverse to compute the inverse matrices in (15) and (16).
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The distance in (16) is known as the Mahalanobis distance with the property that it is in-
variant under linear transformations. Thus, by Lemma 1 , it is invariant to the measurement
noise and functional distortion (e.g., additive noise or multiplicative noise). We note however
that the linear transformation employed by the measurement noise on the observable pdf
(7) may degrade the available information.

In addition, by Lemma 3.1 in [23], the Mahalanobis distance in (16) approximates the
Euclidean distance between samples of the underlying process. Let θt and θs be two samples
of the underlying process. Then, the Euclidean distance between the samples is approximated
to a second order by a local linearization of the nonlinear map of θt to ht, and is given by
(17) ∥θt − θs∥2 = d2C(zt, zs) +O(∥ht − hs∥4).
For more details see [32] and [23]. Assuming there is an intrinsic map i(ht) = θt from
the feature vector to the underlying process, the approximation in (17) is equivalent to the
inverse problem defined by the following nonlinear differential equation

(18)
m∑
i=1

∂θj

∂hi
∂θk

∂hi
=

[
C−1

t

]jk
, j, k = 1, . . . , d.

This equation which is nothing more than a discrete formulation of the definition of a Rie-
mannian metric on the manifold is empirically solved through the eigenvectors of the cor-
responding discrete Laplace operator. The approximation in (17) recovers the intrinsic dis-
tances on the parametric manifold and is obtained empirically from the noisy measurements
by “infinitesimally” inverting the measurement function.

For further illustration, see Fig. 9.
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Figure 9. Consider a set of points on a 2-dimensional torus in R3 (“the manifold”) which
are samples of a Brownian motion on the torus. The geometric interpretation of the intrin-
sic notion is the search for a canonical description of the set, which is independent of the
coordinate system. For example, the points can be written in 3 cartesian coordinates, or
in the common parameterization of a torus using two angles, however, the intrinsic model
(constructed based on the points) describing the torus should be the same. The mahalanobis
distance attaches to each point a Riemannian metric that corresponds to a probability mea-
sure that is driven by the underlying dynamics (the Brownian motion in this particular case),
and therefore, it is invariant to the coordinate system.
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5.3. Local Covariance Matrix Estimation. Let t0 be the time index of a “pivot” sample
ht0 of a “cloud” of samples {ht0,s}L2

s=1 of size L2 taken from a local neighborhood in time.
Here we assume that a sequence of measurements is available, the temporal neighborhoods
can be simply short windows in time centered at time index t0.

The pdf estimates and the local clouds implicitly define two time scales on the sequence
of measurements. The fine time scale is defined by short-time windows of L1 measurements
to estimate the temporal pdf. The coarse time scale is defined by the local neighborhood of
L2 neighboring feature vectors in time. Accordingly, we note that the approximation in (17)
is valid as long as the statistics of the noise are locally fixed in the short-time windows of
length L1 (i.e., slowly changing compared to the fast variations of the underlying process)
and the fast variations of the underlying process can be detected in the difference between
the feature vectors in windows of length L2.

According to the dynamical model in (5) and (12), the samples in the local cloud can be
seen as small perturbations of the pivot sample created by the noise wt. Thus, we assume
that the samples share similar local probability densities2and may be used to estimate the
local covariance matrix, which is required for the construction of the Mahalanobis metric
(16). The empirical covariance matrix of the cloud is estimated by

Ĉt0 =
1

L2

L2∑
s=1

(
ht0,s − µ̂t0

) (
ht0,s − µ̂t0

)T(19)

≃ E
[
(ht0 − E[ht0 ]) (ht0 − E[ht0 ])

T
]
= Ct0

where µ̂t0 is the empirical mean of the set.
As the rank of the matrix d is usually smaller than the covariance matrix dimension m, in

order to compute the inverse matrix we use only the d principal components of the matrix.
This operation “cleans” the matrix and filters out noise. In addition, when the empirical
rank of the local covariance matrices of the feature vectors is lower than d, it indicates that
the available feature vectors are insufficient and a larger cloud should be used.

6. Concluding remarks and bibliography.

This overview of various methodologies to learn and extract natural geometries, and latent
variables from point clouds generated by , observations , computations, or mathematical
processes , is by necessity superficial , and neglects to cover the massive amount of litterature
and algorithms around machine learning. We refer to Yann Ollivier [?] who has pursued
invariant geometric ideas, like the EIG approach, in the context of information geometry
and natural deep learning. The use of tensors to extract features analogous to principal
components (”tensor PCA”) in the context of machine learning, or data processing is also
quite extensive see A. Anandkumar. [?] .

Our goal here was to emphasize on the one hand the co-dependent geometries in duality
or triality ( duality in Besov spaces enables generalizing flexible earth mover distances) , and
on the other hand to illustrate the essential interplay between geometry of point clouds with
various analytic measures of smoothness. This construction enables both effective Harmonic
analysis and dynamic metric constructions . We point out that in the case of matrices, or

2We emphasize that we consider the statistics of the feature vectors and not the feature vectors themselves,
which are estimates of the varying statistics of the raw measurements.
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even convolution operators on functions , it is not generally effective to use their eigenvectors
or Fourier transform, in order to unravel its effect on functions.

The Calderon-Zygmund decompositions were introduced to gain an intimate understand-
ing of the Hilbert transform, they have their wavelet analogs . We try to convey here ,
that this basic geometric organizationn philosophy is natural in the context of mathematical
geometric learning. More generally given a class of geometric structures, such as curves or
embedded surfaces it is natural to relate them through the properties of various operators
intrinsic operators , such as a Diffusion , or other functions of the Laplace operator , and
then use a distance between these operators , as a way of measuring similarity between the
structures see Berard et al, who show that the distance between Riemanian manifolds can
be measured [?]. This is our approach in the 3 tensor case , where we can view one axis
as the label for the structures, and the other two as representing the corresponding opera-
tors, the metrics so defined are quite remarkable. A similar vision is developed to achieve
”shape” matching by G. Peyre, M. Cuturi, J. Solomon. They measure the distance between
affinity matrices ,or diffusions through appropriate Earth mover distances, see [?] and their
references.

We should also mention that alternative multiscale data models were developped by M.
Magggioni [2], as well as R Lederman and R Talmon [?]who developed a methodology to
extract common latent variables between disparate sets of observations , this method can
have a profound impact on the scientific discovery process.
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